
ARTICLE

Neural dynamics of the attentional blink revealed
by encoding orientation selectivity during rapid
visual presentation
Matthew F. Tang 1,2,3*, Lucy Ford 1, Ehsan Arabzadeh 2,3, James T. Enns 4,5, Troy A.W. Visser5 &

Jason B. Mattingley 1,2,6,7

The human brain is inherently limited in the information it can make consciously accessible.

When people monitor a rapid stream of visual items for two targets, they typically fail to see

the second target if it occurs within 200–500 ms of the first, a phenomenon called the

attentional blink (AB). The neural basis for the AB is poorly understood, partly because

conventional neuroimaging techniques cannot resolve visual events displayed close together

in time. Here we introduce an approach that characterises the precise effect of the AB on

behaviour and neural activity. We employ multivariate encoding analyses to extract feature-

selective information carried by randomly-oriented gratings. We show that feature selectivity

is enhanced for correctly reported targets and suppressed when the same items are missed,

whereas irrelevant distractor items are unaffected. The findings suggest that the AB involves

both short- and long-range neural interactions between visual representations competing for

access to consciousness.
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Despite the remarkable capacity of the human brain, it is
found wanting when undertaking multiple tasks con-
currently, or when several goal-relevant items must be

dealt with in rapid succession. These limitations are particularly
evident when individuals are required to execute responses
to multiple items under time pressure1,2, or when they must
report relevant target items that appear briefly and in rapid
succession3–5. Elucidating the source of these limitations has been
a persistently difficult challenge in neuroscience and psychology.
While the neural bases for these processing limits are not fully
understood, it is widely assumed that they are adaptive because
they provide a mechanism by which selected sensory events can
gain exclusive control over the motor systems responsible for
goal-directed action.

Here we address a long-standing question concerning the
neural basis of the widely studied attentional blink (AB) phe-
nomenon, where observers often fail to report the second of two
target items (referred to as T2) when presented within 200–500
ms of the first target (T1) in a rapid stream of distractors3–5.
Functional magnetic resonance imaging (fMRI) lacks the tem-
poral resolution to accurately characterise neural activity asso-
ciated with the rapid serial visual presentation (RSVP) tasks
presented at rates of 8–12 Hz, which are commonly used to elicit
the AB6,7. Even electroencephalography (EEG), which has rela-
tively good temporal resolution, produces smeared responses to
items in an RSVP stream8. Furthermore, mass-univariate
approaches applied to fMRI or EEG data only measure overall
neural activity while providing no information about how neural
activity represents featural information carried by single items
(e.g., their orientation).

Here we overcome these limitations by combining recently
developed multivariate modelling techniques for neuroimaging9–16

with an RSVP task designed to determine the neural and beha-
vioural basis for the AB. Forward (or inverted) encoding modelling
determines the neural representation of feature-selective infor-
mation contained within patterns of brain activity, using multi-
variate linear regression. This approach allowed us to explicitly
measure the neural representation of specific features—in this case,
orientation-selective information elicited by grating stimuli—
separately for each item within an entire RSVP stream.

We use this approach to address two central theoretical
questions. First, does selection of a target from within an RSVP
stream increase the gain or the precision of its neural repre-
sentation? Previous efforts to answer this question in the domain
of spatial attention have come from single cell recordings in non-
human primates17,18, as well as whole-brain activity measured
using fMRI and EEG in humans15,19. With few exceptions, these
studies have found that spatial attention increases the gain of
feature-selective processing of attended items. By contrast,
feature-based manipulations of attention, in which specific
characteristics of an item such as its colour or motion are cued for
selective report, typically result in a sharpening of neural
selectivity20,21. To date, it remains unknown whether the limits of
temporal attention in the AB are associated with changes in
neural tuning to targets, distractors, or both classes of items. The
neural response in human primary visual cortex6 and macaque
lateral intraparietal area22 to the second target is reduced overall
on AB trials compared with non-AB trials, while subtraction-
based EEG designs have shown that a late-stage component of the
ERP (the N400) is reduced 200–400 ms after target presentation8.
Critically, however, these measures cannot determine how the AB
affects the neural representation of visual information, which
could conceivably reflect a reduction in gain, an increase in
tuning sharpness, or both.

A second, unresolved theoretical question concerns the source
of the AB. Existing theories have often attributed the AB to either

extended processing of the first target, or to inadvertent distractor
processing. In the first class of theories, it is assumed that all items
generate representations in early visual areas, but that the system
inhibits items after T1 detection to avoid contamination by dis-
tractors23–26. On other accounts (so-called ‘distractor-based’
theories), the AB is assumed to reflect a cost associated with
switching between target and distractor processing27. Finally, a
third class of theories argues that the representation of the second
target can become merged with either the first target or the
distractors28,29. This class of theories is motivated by the finding
that the perceived order of targets is often reversed (i.e., T2 is
reported as appearing before T1).

Our RSVP task consists of a stream of randomly oriented
Gabor gratings, with two higher spatial-frequency targets set
amongst lower-spatial-frequency distractors (Fig. 1a and Sup-
plementary Movie 1). At the end of the stream, participants are
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Fig. 1 Schematic of stimuli and timing of displays in the rapid serial visual
presentation (RSVP) task. a An illustration of a typical trial in the RSVP
task, which consisted of 20 sequentially presented Gabor patches at
fixation. Each of the twenty items within a single RSVP stream was
presented for 40ms, with an 80ms blank interval between items (120ms
inter-stimulus interval), yielding an 8.33 Hz presentation rate. The number
of items (Lag) between the first (T1) and second (T2) targets was varied to
measure the temporal duration of the AB. At the end of each RSVP stream,
participants reproduced the orientations of T1 and T2 (higher spatial-
frequency gratings) in the order in which they were presented by adjusting
an on-screen cursor at the end of the trial. They were asked to determine
the orientations as accurately as possible and were not given any time
restriction to do this. Visual feedback was provided following the response.
b A schematic of the feedback screen for responses. c The correlation
values between orientations of the RSVP items over trials in Experiment 1.
As Gabor orientations were randomly drawn (without replacement) on
each trial, across all trials the orientation of any given item in the stream
was uncorrelated with the orientation of any other item. This permitted the
use of regression-based approaches to isolate the behavioural and neural
processing of individual items independently of surrounding items within
the stream. The correlations were calculated for each participant and are
displayed as averaged across participants.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14107-z

2 NATURE COMMUNICATIONS |          (2020) 11:434 | https://doi.org/10.1038/s41467-019-14107-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


asked to reproduce the orientations of the two targets (Fig. 1b).
Critically, the orientation of each item in the stream is uncorre-
lated with the orientation of all other items (Fig. 1c), thus per-
mitting the use of linear regression analyses to separately extract
the influence of each item in the stream on neural activity mea-
sured by EEG, and on behavioural reports of the orientations of
the two targets. These aspects of the experimental design allowed
us to quantify the influence of both targets and distractors on
participants’ perceptual reports and on their associated neural
representations.

To preview the results, the behavioural target task replicated
the hallmarks of the AB effect: the orientation of T1 was reported
with a relatively high degree of accuracy, whereas orientation
judgements for T2 were degraded when T2 appeared 200–400 ms
after T1. Forward encoding analyses of EEG activity showed that
targets evoked greater orientation-selective information than
distractors when T2 was accurately reported (i.e., in non-AB
trials), and that orientation information evoked by T2 was sup-
pressed, relative to the distractors, when T2 was missed (i.e., in
AB trials). Critical to our first question of whether focused
attention influences the gain or precision of feature-specific

representations, only the gain of the encoded EEG response was
affected by T2 response accuracy.

With respect to our second question—whether accuracy in
registering the second target is linked to the processing of T1 or to
the intervening distractors—the evidence was in favour of T1-
based theories of the AB. We found no evidence to suggest that
neural representations of the distractors are affected by the AB.
Finally, we describe an unexpected observation—one not pre-
dicted by any theory of the AB—namely, a significant interaction
between the specific features of T1 and T2, implying a previously
unknown long-range temporal integration of target representa-
tions within rapid sequential visual streams.

Results
Experiment 1—behavioural hallmarks of the AB. Participants’
(N= 22) response errors (i.e., the difference between the pre-
sented and reported orientation for each target) were centred
around 0°, verifying that they were able to perform the task as
instructed. Figure 2a captures the temporal dynamics of the AB,
such that accuracy was affected by target position (T1 or T2) and
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Fig. 2 Behavioural results for the RSVP task in Experiment 1. a The distribution of response errors (difference between presented and reported
orientation) across participants (N= 22) for the first (T1, blue lines) and second (T2, red lines) target for each Lag condition. The line shows fitted four-
parameter Gaussian function. b Quantified behavioural responses for the four parameters of the fitted Gaussian function (see Supplementary Fig. 1) for
each participant. Gain shows the amplitude, width shows the standard deviation of the function, centre orientation is the mean (which should be centred
around 0° for unbiased estimates), and baseline is a constant parameter accounting for non-orientation selective responses which indicates guessing.
Asterisks indicate Bonferroni-corrected t-tests showing significant differences at p < 0.05. c Regression results for the influence of distractors and targets
on participants’ responses. Higher regression weights indicate that a given item’s orientation was more influential for determining the reported orientation.
The dotted vertical lines indicate the position of the other target (colour matched). Consider, for example, the panel depicting Lag 2 results. For T1 report,
T2 occurred at item plus 2 as indicated by the dotted blue line, whereas for T2 report, T1 occurred at item minus 2, as indicated by the dotted red line.
Across all panels, error bars indicate ∓1 standard error of mean.
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Lag. Specifically, at Lag 1 accuracy for both T1 and T2 was
degraded relative to accuracy at the other lags (2, 3, 5 and 7).
Moreover, at Lags 2 and 3, T1 accuracy was high whereas T2
accuracy was relatively poor. This was largely due to an increase
in the baseline guessing rates (where errors occurred evenly
across all orientations). Finally, at longer temporal separations
(Lags 5 and 7), target accuracy was similar for both items.

Experiment 1—modelling the AB using behavioural data. We
fitted Gaussian functions to each individual’s data to quantify
how the AB affected target perception (Fig. 2b; see Methods and
Supplementary Fig. 1). The accuracy reduction for T2 at Lags 2
and 3 was primarily linked to a reduction in gain. A 2 (Target; T1,
T2) × 5 (Lag; 1,2,3,5,7) within-subjects ANOVA showed the gain
parameter was affected by Target (F(1,21)= 10.00, p= 0.005,
ηp2= 0.32) and Lag (F(4,84)= 11.66, p < 0.0001, ηp2= 0.36), and
the interaction between these factors (F(4,84)= 7.10, p < 0.0001,
ηp2= 0.25). Critically for our first theoretical question, the spread
(width) of orientation errors was unaffected by the factors of
Target (F(1,21)= 0.10, p= 0.76, ηp2= 0.005) or Lag (F(4,84)=
0.55, p= 0.70, ηp2= 0.03), or by the interaction between these
factors (F(4,84)= 0.19, p= 0.94, ηp2= 0.01). The baseline para-
meter, which reflects guessing of random orientations, was also
significantly affected by the factors of Target (F(1,21)= 12.72,
p= 0.002, ηp2= 0.38) and Lag (F(4,84)= 4.82, p= 0.002, ηp2=
0.19), and by the interaction between them (F(4,84)= 5.04, p=
0.001, ηp2= 0.19). These same effects were also evident when the
data were not normalised (Supplementary Fig. 2), and with a wide
range of parameters to specify the orientation errors (Supple-
mentary Fig. 3).

Taken together, these results are consistent with a previous AB
study using similar analysis methods30. They also lend weight to
the global workspace theory of consciousness in the AB31, which
argues that participants either see the target and have full
awareness of it (allowing them to respond precisely), or they have
no awareness (and so simply guess randomly). By contrast, the
results are inconsistent with the opposing view that the AB
involves a noisier (i.e., weaker precision) signal for the target that
is inaccurately reported32.

Experiment 1—targets, not distractors, influence orientation
judgements. To evaluate the influence of distractors on partici-
pants’ reports, we aligned the orientations of the items relative to
target position within the RSVP stream (−4 to +7 items) and
constructed a regression matrix to predict the behavioural
response for each target. If the orientation of an item is influential
in determining the reported orientation, the regression weight
will be relatively high (Fig. 2c). As expected, for all lags,
each reported target orientation was influenced principally by its
own orientation. The one exception was the item at Lag 1, where
the reported orientation of T1 was as strongly influenced by the
orientation of T2 as by the orientation of T1. This observation is
in line with numerous studies which have suggested that temporal
order information can be lost for consecutive targets29,33. This
phenomenon, also known as Lag 1 switching, where the perceived
order of the targets is reversed, explains why the accuracy of
orientation judgements on both T1 and T2 was reduced at Lag 1
(see also Supplementary Fig. 4). By contrast, for items at Lags 2
and 3, orientation judgements on T1 were only marginally
influenced by the orientation of T2 (i.e., for items at positions +2
and +3, respectively, in the RSVP stream). However, at these
same lags (where the AB was maximal) T2 reports were sig-
nificantly influenced by T1 orientation (i.e., for items at positions
−2 and −3, respectively). Importantly, there was no reliable
influence of distractors on reported target orientation at any lag,

suggesting distractors played little or no role in target orientation
errors.

Experiment 1—long-range integration of target orientations.
One account of the AB28,29 has suggested that successive targets
presented at short lags are integrated into a single episodic trace,
which accounts for Lag 1 switching. With the present task, we can
directly quantify how targets are integrated by looking for sys-
tematic biases in the reported orientation of a given target based
on its orientation difference with respect to the other target.
Figure 3a shows orientation judgement errors as a function of the
difference between the two target orientations. While the average
orientation error is centred on 0°, the perceived orientation of
either target (T1 or T2) was significantly biased toward the
orientation of the other target within the RSVP stream at early
Lags. Furthermore, these biases were orientation-tuned, such that
the largest bias occurred when targets differed by approximately
45°, somewhat analogous to serial dependency effects34,35. This
profile of biases suggests response integration, rather than
replacement, as the latter would predict that only the orientation
of T2 should drive the reported orientation of T1. Instead, and
consistent with our linear regression analysis (see Fig. 2c), the bias
reflected the difference between target orientations, which sup-
ports the idea that the critical features of the two targets are
assimilated over time28,29.

We fit first derivative of Gaussian (D1) functions36–38 to
quantify the amount of orientation-selective bias for both targets
at each Lag for each participant. A 2 (Target; T1, T2) × 5 (Lag;
1,2,3,5,7) within-subjects ANOVA revealed significant main
effects of Target (F(1,21)= 5.04, p= 0.04, ηp2= 0.19) and Lag
(F(4,84)= 6.54, p < 0.0001, ηp2= 0.24), and a significant interac-
tion (F(4,84)= 6.14, p < 0.0001, ηp2= 0.27). For T1 reporting, the
bias was significantly greater than chance at all intervals, whereas
for T2, there was a significant bias at Lags 2 and 3 only
(Bonferroni-corrected one-sample t-test, all ps < 0.05). As might
be expected28,29, the ‘attraction’ bias in target reports was
strongest when the two targets were presented with no
intervening distractors between them (i.e., at Lag 1). An entirely
unexpected finding, however, is that there was an equally strong
attraction bias between targets presented at Lags 2 and 3 (see
Fig. 3b), even though participants were not explicitly aware of the
orientation of T2 on AB trials.

Experiment 1—biased perception of targets by preceding dis-
tractors. Previous work suggests that distractor processing can
significantly interfere with target processing39–41, particularly for
the immediate post-target item which can be integrated into the
target representation28,29,33. To determine whether this was the
case in our data, we repeated the previous analysis but used the
difference in orientation between the target and each of the other
items in the RSVP stream (Fig. 3c). For most lags, the reported
target orientation was significantly attracted toward the imme-
diately following distractor, but was not reliably influenced by any
other distractor. A 2 (Target; T1, T2) × 5 (Lag; 1,2,3,5,7) × 5 (Item
position; −1,1,2,3,4) within-subjects ANOVA confirmed a sig-
nificant three-way interaction between the factors (F(16,336)=
4.11, p < 0.0001, ηp2= 0.16). At Lag 1, there was no influence of
distractors on reported orientations for either T1 or T2. Taken
with the previous result, this suggests that the representation of a
given target is influenced by both the other target and by the post-
target item. The results suggest that when the visual system
detects a target, it automatically integrates features from the
immediately subsequent item. This is consistent with previous
studies that have highlighted the importance of masking by the
item immediately following the target in eliciting the AB42.
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Experiment 2—electrophysiological recording of the AB. We
next characterised the neural activity elicited by individual RSVP
items, and determined how this was affected by the AB. In
Experiment 2, a group of 23 new participants undertook the
RSVP task introduced in Experiment 1 while neural activity was
concurrently measured using EEG. The method was identical in
all respects, except that we now included targets only at Lags 3
and 7 (i.e., a single target inside and outside the AB, respectively)
to increase the within-subject power for the EEG analyses.

Experiment 2—behavioural results. The behavioural results
replicated, in all important respects, those found in Experiment
1. As shown in Fig. 4a, participants performed well overall, and
their orientation judgements for T1 and T2 were centred on the
presented orientations. As in Experiment 1, we fit Gaussian
functions to quantify the results (Fig. 4b). For the gain para-
meter, a 2 (Target; T1, T2) × 2 (Lag; 3, 7) within-subjects
ANOVA revealed significant main effects of Target (F(1,22)=
11.63, p= 0.003, ηp2= 0.35) and Lag (F(1,22)= 18.70, p <
0.0001, ηp2= 0.46), and a significant interaction (F(1,22)=
40.19, p < 0.0001, ηp2= 0.65). Likewise for the baseline para-
meter, there were significant effects of Target (F(1,22)= 8.96,
p= 0.007, ηp2= 0.30) and Lag (F(1,22)= 12.21, p= 0.002, ηp2=
0.36), and a significant interaction (F(1,22)= 7.91, p= 0.01,
ηp2= 0.26). By contrast, there were no significant main effects
and no interaction for the width parameter (Target (F(1,22)=
1.19, p= 0.29, ηp2= 0.05; Lag (F(1,22)= 3.90, p= 0.06, ηp2=
0.15); interaction (F(1,22)= 0.14, p= 0.71, ηp2= 0.006).

Experiment 2—orientation selectivity of RSVP items. We next
applied forward modelling to the EEG data recorded during the
task to quantify orientation information contained within mul-
tivariate patterns of neural activity. Because the orientations of
successive items were uncorrelated, we were able to quantify
orientation selectivity for each grating without contamination
from adjacent items. Forward encoding uses a linear regression-
based approach to find multivariate patterns of EEG activity that
are selective for features of interest—in this case orientation. As
no previous study has used forward encoding in conjunction with
rapid visual presentations, we first verified that orientation
selectivity for each of the 20 RSVP items could be extracted
separately using this approach, and at what time point any such
response was evident. To do this, we constructed 20 encoding
models, one for each of the item positions within the 20-item
RSVP stream, based on the orientations presented for that item
across trials.

As shown in Fig. 5, the forward encoding revealed robust and
reliable feature selectivity derived from patterns of EEG activity
for each of the gratings presented during the RSVP. Each item’s
orientation was successfully decoded over a time window that
extended from 74 to 398 ms after the item was presented.
Examination of the neural responses to each of the 20 items
within the RSVP stream (Fig. 5c) shows that feature selectivity
was evident as a series of regularly spaced, short-lived impulse
responses, each with a delay of around 50 ms from grating onset
and lasting approximately 300 ms. To quantify these observa-
tions, we fit Gaussian functions to the forward encoding results
for each item separately for each participant and at each time
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point. There was significant feature selectivity (given by the gain
of the Gaussian) for each item immediately after it was presented
but not before (Fig. 5d). These representations were temporally
overlapping, such that multiple orientation-selective responses
(~3) were detectable at the same time. Taken together, the
forward encoding analyses verify that it is possible to reliably
recover the presented orientation of every RSVP item from the
multivariate pattern of neural activity recorded using EEG.

Experiment 2—reduced feature-selective information for T2
during the AB. We next examined how neural representations of
the target items were affected by the AB. To increase signal-to-
noise for training the encoding model, we aligned the EEG data to
the presentation time of each item in the RSVP stream and
applied the same forward encoding procedure. This meant that
the model was trained and tested across 12,000 presentations (600
trials by 20 RSVP items; see Fig. 6). To determine the effect of the
AB on orientation-selectivity, we separated the forward encoding
results by target (T1,T2) and T2 accuracy (correct, incorrect). For
the purposes of the analyses, trials were scored as correct if the
reported orientation was within ±30 degrees of the presented
orientation, a criterion which yielded roughly equal correct and
incorrect trials at Lag 3. In line with the AB literature, for all the
EEG analyses we only included trials where participants correctly
identified T1. Applying these criteria yielded the classic AB effect
(Supplementary Fig. 5). A 2 (Lag; 3, 7) × 2 (Target; T1, T2)
within-subjects ANOVA applied to these scores revealed sig-
nificant main effects of Lag (F(1,22)= 19.05, p < 0.0001, ηp2=
0.46) and Target (F(1,22)= 18.00, p < 0.0001, ηp2= 0.45), and a
significant interaction (F(1,22)= 31.91, p < 0.0001, ηp2= 0.59).
Follow-up t-tests showed that Lag 3 accuracy was significantly
lower than Lag 7 accuracy for T2 items (t(22)= 5.20, Bonferroni
p= 0.0001, d= 0.44) but not for T1 items (t(22)= 2.11, Bon-
ferroni p= 0.09, d= 0.44). In addition, T2 accuracy was sig-
nificantly lower than T1 accuracy at Lag 3 (t(22)= 5.94,
Bonferroni p < 0.0001, d= 1.08), but there was no such difference
at Lag 7 (t(22)= 1.20, Bonferroni p= 0.48, d= 0.25).

We again fitted Gaussians to each time point to quantify the
amount of feature-selective information evoked by the targets.
For both T1 and T2, there was significant feature-selective activity

shortly after each item appeared (Fig. 6a). For Lags 3 and 7, there
was no difference between correct and incorrect trials for the T1
representation. For T2, however, incorrect trials resulted in a
significantly decreased feature-selective response (cluster p=
0.02) relative to correct trials shortly after each item appeared
(100–150 ms) at Lag 3, although the response was not completely
suppressed. There were no significant differences in the
orientation-selective response between correct and incorrect trials
for T2 at Lag 7, suggesting the suppression is caused by the AB
rather than general target detection. This was expected because
the AB typically lasts less than 500 ms, and is consistent with the
current behavioural results showing an AB at Lag 3 but not at Lag
7. Performing the same analysis on the other parameters of the
Gaussian (width, centre, baseline) showed no effect of the AB
(Supplementary Fig. 6).

To ensure we did not miss any small but consistent effects, we
averaged the forward encoding results (Orientation × Time) over
the early (100–150 ms) timepoints to increase signal-to noise-
ratio and recovered the orientation tuning curve (Fig. 6b). Fitting
Gaussians to these values confirmed that the AB was associated
with a change in the gain of feature selectivity for T2 at Lag 3,
such that correct trials showed significantly greater gain than
incorrect trials (t(22)= 3.12, p= 0.01, d= 0.65; Fig. 6b upper
panel). By contrast, the width of the representation was again
unaffected by the AB (t(22)= 1.66, p= 0.11, d= 0.35) for the
same item. For Lag 7 items, neither the gain (t(22)= 0.12, p=
0.90, d= 0.03; Fig. 6b lower panel) nor the width (t(22)= 0.04,
p= 0.96, d= 0.01) of the neural representations of T2 items were
affected by behavioural performance (correct vs. incorrect trials).

The reduction in T2 selectivity for incorrect trials at Lag 3 was
not driven by an arbitrary split of trials into correct and incorrect
categories. To verify this, we sorted the evoked T2 forward
encoding results by the amount of orientation error (in 15º error
bins to allow sufficient signal-to-noise ratios for fitting). There
was significantly greater feature selectivity when the orientation
error was small, and this selectivity gradually decreased with
larger errors (one-way within-subjects ANOVA, F(1,22)= 2.76,
p= 0.02, ηp2= 0.11; Fig. 7). Note that this finding is inconsistent
with a graded model of the AB, and instead supports the idea that
response variability during the AB is associated with both a
decrease in feature-selective gain and an increase in the rate of
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guessing. This finding is consistent with the behavioural results,
which suggest a discrete model of the AB. Overall, these results
indicate that the AB is associated with a reduction in gain, but not
width, of feature-selective information for the second target item
(T2), and that this effect occurs soon after the target appears
within the RSVP stream.

Experiment 2—only targets affect the AB, but not distractors.
We next examined the neural representations both of targets and
distractors to test the different predictions made by T125,26-
versus distractor-based27 accounts of the AB. T1-based accounts
argue that the second target deficit is caused by extended pro-
cessing of the first target, whereas distractor-based accounts,
argue that deleterious processing of the distractors, mainly
between T1 and T2, causes the second target to be missed. The
theories thus make distinct predictions about the neural repre-
sentation of target and distractor items. According to T1-based

accounts, target representations should be enhanced relative to
those of distractors, and missed T2 items on AB trials should be
more poorly represented than correctly reported T2 items. By
contrast, distractor-based accounts predict that neural repre-
sentations of distractor items should be stronger on AB trials than
on non-AB trials and weaker following T1 presentation.

As before, we averaged the forward encoding modelling
representations (Orientation × Time) across an early time point
(100 to 150 ms), and fit Gaussians to each participant’s data to
quantify feature selectivity (Fig. 8a). For correct trials (i.e.,
orientation responses to T2 were within 30° of the presented
orientation), the two targets resulted in significantly higher
feature selectivity (gain) than the immediately adjacent distractors
(−2,−1,+1 and +2 items) for both T1 and T2 representations
(all ps < 0.04). On incorrect trials, feature selectivity for T1 was
not significantly greater than selectivity for the surrounding
distractors (t(22)= 0.15, p= 0.88, d= 0.03), even though we
included only trials in which T1 was correctly reported. Most
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interestingly, on incorrect trials the representations of T2 items
were significantly lower than those of the immediately adjacent
distractors (t(22)= 2.09, p= 0.04, d= 0.44), suggesting that the
featural information carried by T2 was suppressed, while
distractors were unaffected. To directly test the distractor model
of the AB, we compared distractor representations before T1 with
distractor representations during the AB (i.e., between T1 and
T2). The account predicts that distractors presented during the
AB should elicit a stronger neural representation as they are likely
to be incorrectly selected as targets. Instead, we found that
distractors were represented similarly before and during the AB
for both correct trials (t(22)= 0.85, p= 0.40, d= 0.18) and
incorrect trials (t(22)= 1.83, p= 0.08, d= 0.38).Taken together,
these results suggest that for trials where participants accurately
report target orientation, the neural representations of targets are
boosted relative to those of distractors. By contrast, when the
second target is missed, as occurs during the AB, there is a
significant suppression of the target’s featural information.

Experiment 2—localisation of feature selectivity for targets and
distractors. In a final step, we performed a univariate sensor-level
analysis for feature selectivity10 to find the topographies asso-
ciated with target and distractor processing. To do this, we
trained a simplified model of feature selectivity on each type of
item (targets and distractors) separately for each EEG sensor.
Orientation information for both targets and distractors was
evident most strongly over occipital and parietal areas, and target
items generated significantly greater selectivity over these areas
than distractors (Fig. 8b). These findings suggest that while target
and distractor items are processed in overlapping brain regions,

targets generate significantly greater orientation-selective infor-
mation than distractors.

Discussion
We developed an RSVP paradigm to determine the neural and
behavioural bases of the limits of temporal attention. The beha-
vioural results replicated the hallmark of the AB with response
accuracy being significantly reduced when T2 was presented
within 200–400 ms of T1. We discovered that target representa-
tions influenced one another, such that the reported orientation
of one target was biased toward the orientation of the other.
Results from Experiment 2 revealed that successfully reporting T2
depended on a boost to its neural representation relative to other
items in the RSVP stream, whereas missing T2 corresponded to a
suppressed neural response relative to the distractors. Notably,
there was no evidence for suppression of neural representations
of the distractors, suggesting the AB is primarily driven by pro-
cessing competition between target items. This observation sup-
ports theories that have attributed the second-target deficit to first
target processing4,23,43, but is inconsistent with theories that
attribute the AB to inadvertent processing of distractor items24,27.

An important but unexpected result is that target reports were
influenced by one another despite being separated by several
hundred milliseconds and multiple distractor items. One influ-
ential theory argues that the AB is caused by temporal integration
of the target with the immediate post-target distractor28,29. Our
RSVP task found evidence for this but also showed that target
representations appear to be integrated with each other even
when they are separated by multiple distractor items within the
stream. This finding is not explicitly predicted by any existing
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account of the AB. The largest bias was for Lag 1 trials, in which
the two targets appear sequentially, a result that is consistent with
Lag 1 switching28,29,33. The orientation of the immediate post-
target distractor also significantly biased the perceived target
orientation, whereas the distractors that appeared between the

targets did not bias perceptual judgements. Taken together, our
findings across two experiments suggest that the detection of a
target in an RSVP sequence starts a period of local integration
which involuntarily captures the next item, whether it is a target
or a distractor. This is followed by a more global integration of
targets, possibly within working memory4.

Our first major aim was to determine how the AB affects target
representations. The forward encoding modelling of the EEG data
adds to previous results30 by demonstrating that the gain in
neural representations of Lag 3 items is significantly reduced in
AB trials, compared with non-AB trials. Supporting the beha-
vioural results, there was no effect on the width of EEG-derived
feature selectivity during the AB. The neural results also go
beyond the behavioural findings by showing that the gain of Lag 3
items is not only suppressed on AB trials, but boosted on non-AB
trials compared with those of the distractors. Taken together,
these results suggest that temporal attention operates in a similar
manner to spatial attention15,17–19, but not to feature-based
attention20,21, as the former has been found to affect the gain of
neural responses whereas the latter tends to affect the sharpness
of neural tuning.

The second major aim of our study was to resolve the persis-
tent debate between T1- and distractor-based theories of the
AB4,23–27,43,44. Behaviourally, we found scant evidence that dis-
tractors (apart from the immediately subsequent distractor)
influence target perception. Consistent with T1-based accounts of
the AB4,25, there were robust neural representations of distractors
and no evidence that distractor representations were boosted
following initial target detection, as would be predicted by
distractor-based accounts. Furthermore, we found no evidence
that post-T1 distractors were suppressed, as would be predicted
by T1-based inhibition accounts of the AB4,23. Instead, consistent
with T1-based accounts, the representations of both targets were
boosted relative to those of the distractors. If the second target
was missed, however—as occurs during the AB—then the
representation of the second target was significantly suppressed
relative to the distractors. Taken together, these results suggest
that when the first target is processed rapidly, attention is effi-
ciently redeployed to the second target, causing its representation
to be boosted. By contrast, if the second target appears while
processing of the first target is ongoing, the visual system actively
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suppresses the information to avoid the targets interfering with
each other.

Suppression of the T2 representation occurred 100–150 ms
after the target appeared, suggesting inhibition of the sensory
information by ongoing processing of T1. This fits well with
previous work showing that the AB is associated with a reduced
late-stage response, as indicated by an ERP component associated
with working memory consolidation8,45. Taken together with the
current results, it appears that the AB is associated with an early
suppression of sensory information associated with the
T2 stimulus. The diminished strength of sensory information
associated with the T2 item in turn is expected to exert less
influence on later stages in the information processing hierarchy,
such as working memory. This could also explain why the T2
representation was only initially affected (100–150 ms), as only its
early appearance needs to be suppressed to stop inference with T1
processing at a higher stage. These behavioural results may be
consistent with sequential working memory consolidation of
targets. We found the precision of reporting T1 was unaffected by
Lag, even though often during the AB only one item is reported,
whereas at longer lags two items are reported. During spatial
working memory tasks, where multiple items are simultaneously
presented, longer lags should have a higher memory load and lead
to lower precision46. Instead, the current results suggest that each
target is consolidated into working memory before the store
allows a second item to enter.

In summary, the current work adds to our understanding of
the neural and behavioural basis of temporal attention. We were
able to recover a neural signature for each item within an RSVP
stream, something that has not been possible with conventional
approaches to EEG and fMRI data. Our methodology indicated
that while there is co-modulation of featural information carried
by each of the targets, there is no evidence for distractor sup-
pression in this RSVP task. We also document the existence of
interactions among targets that are separated by several hundred
milliseconds.

Our methodology provides a rich framework for exploring the
neural bases of many psychological phenomena, including repe-
tition blindness47 and contingent attentional capture48. The
current work was not designed to pinpoint the exact neural locus
of the AB, but combining our approach with a technique like
fMRI, which has better spatial resolution than EEG, could elu-
cidate some of the key brain areas involved in the phenomenon. It
has been suggested that feedback and feedforward processes
modulate different aspects of the AB49. Future studies might also
fruitfully combine our method with invasive recordings across
multiple brain sites in animal models, to better understand the
neuronal mechanisms underlying the AB effect.

Methods
Participants. In Experiment 1, 22 participants (13 females, 9 males; median age 22
years; range 19–33 years) were recruited from a paid participant pool and reim-
bursed at AUD$20/hr. In Experiment 2, 23 participants (14 females, 9 males;
median age 23 years; range 19–33 years old) were recruited from the same pool and
reimbursed at the same rate. Each person provided written informed consent prior
to participation and had normal or corrected-to-normal vision. The study was
approved by The University of Queensland Human Research Ethics Committee
and was in accordance with the Declaration of Helsinki.

Experimental setup. Both experiments were conducted inside a dimly illuminated
room. The items were displayed on a 22-inch LED monitor (resolution 1920 × 1080
pixels, refresh rate 100 Hz) using the PsychToolbox presentation software for
MATLAB50,51. In Experiment 1, participants were seated at a distance of
approximately 45 cm from the monitor. In Experiment 2, the same viewing dis-
tance was maintained using a chinrest to minimise head motion artefacts in the
EEG. At a viewing distance of 45 cm, the monitor subtended 61.18º × 36.87º (one
pixel= 2.4′ × 2.4′).

Task. A schematic of the task is shown in Fig. 1. Supplementary Movie 1 shows
two example trials. Each trial began with a central fixation point and the RSVP
stream commenced after 300 ms. The stream consisted of 20 Gabors (0.71° stan-
dard deviation, ~5° diameter, 100% contrast, centred at fixation) on a mid-grey
background. On each trial, the orientations of the twenty Gabors in the stream
were drawn pseudo-randomly, without replacement, from integer values ranging
from 0–179°. Both targets and distractors were drawn from the same random
distribution, meaning there was no restriction on the relationship between targets
(except they could not be identical). Note the uncorrelated nature of the targets
means the design controls for possible repetition blindness effects52, since the
targets were equally likely to be similar in orientation as they were to be maximally
dissimilar (i.e., orthogonal), and thus any potential orientation-specific effects
would cancel out across trials.

Each item was presented for 40 ms and was separated from the next item by a
blank interval of 80 ms, yielding an 8.33 Hz presentation rate. The participants’ task
was to reproduce the orientations of the two high-spatial-frequency Gabors (targets;
2 c/°) while ignoring the items of a low-spatial frequency (distractors; 1 c/°).
Between 4 and 8 distractors, varied pseudo-randomly on each trial, were presented
before the first target (T1) to minimise the development of strong temporal
expectations, which can reduce the AB40,53. The number of distractor items
between T1 and T2 defined the inter-target lag (1,2,3,5,7 in Experiment 1, and 3,7
in Experiment 2). There were 600 trials in each of the two experiments, with an
equal distribution of trials across the lag conditions (120 in Experiment 1, 300 in
Experiment 2), with fewer lags included in Experiment 2 to increase signal to noise
for the regression-based EEG analysis. In Experiment 2, we selected Lag 3 as the
test condition for the AB because it yielded a significant reduction in T2 response
accuracy compared with T1 in Experiment 1, and because it has been widely used
in previous studies of the AB24,39,40,54–57.

Participants were asked to monitor the central RSVP stream until the
presentation of the last Gabor, after which a response screen appeared (see Fig. 1b).
The response screen consisted of a centrally presented black circle (10° diameter)
and a yellow line. Participants rotated the line using a computer mouse to match
the perceived orientation of the target and clicked to indicate their desired
response. They were asked to reproduce the orientations of the two targets (T1, T2)
in the order they were presented, and to respond as accurately as possible, with no
time limit. After providing their responses, participants were shown a feedback
screen which displayed their orientation judgements for T1 and T2, and the actual
orientations of both targets (see Fig. 1c). The feedback was displayed for 500 ms
before the next trial began, and participants were given a self-paced rest break every
40 trials. Each experiment took between 50 and 60 min to complete.

EEG acquisition and pre-processing. In Experiment 2, continuous EEG data were
recorded using a BioSemi Active Two system (BioSemi, Amsterdam, Netherlands).
The signal was digitised at 1024 Hz sampling rate with a 24-bit A/D conversion.
The 64 active scalp Ag/AgCl electrodes were arranged according to the interna-
tional standard 10–20 system for electrode placement58 using a nylon head cap. As
per BioSemi system design, the common mode sense and driven right leg electrodes
served as the ground, and all scalp electrodes were referenced to the common mode
sense during recording. Pairs of flat Ag-AgCl electro-oculographic electrodes were
placed on the outside of both eyes, and above and below the left eye, to record
horizontal and vertical eye movements, respectively.

Offline EEG pre-processing was performed using EEGLAB59 in accordance
with best practice procedures60,61. The data were initially down sampled to 512 Hz
and subjected to a 0.5 Hz high-pass filter to remove slow baseline drifts. Electrical
line noise was removed using the clean_line, and clean_rawdata functions in
EEGLAB was used to remove bad channels (identified using Artifact Subspace
Reconstruction), which were then interpolated from the neighbouring electrodes.
Data were then re-referenced to the common average before being epoched into
segments for each trial (−0.5 s to 3.0 s relative to the first Gabor in the RSVP).
Systematic artefacts from eye blinks, movements and muscle activity were
identified using semi-automated procedures in the SASICA toolbox62 and
regressed out of the signal. The data were then baseline corrected to the mean
average EEG activity from 500 to 0 ms before the first Gabor in the trial.

Behavioural analysis. To determine how the AB affected participants’ perception
of targets, for each trial we found the difference between the actual target orien-
tation and the reported orientation (i.e., the orientation error) for T1 and T2. This
approach is analogous to one employed in previous work that examined whether
the AB is associated with discrete or graded awareness of T230. The continuous
nature of the orientation responses given by participants on each trial raises the
challenge of distinguishing “correct” and “incorrect” trials. For Experiment 2, we
scored trials as correct when the orientation error was less than 30° from the
presented orientation; trials were scored as incorrect when the orientation error
was greater than 30°. As shown in Supplementary Fig. 5, this approach to scoring
yielded a classic blink effect, suggesting the task captures the important behavioural
features of the widely reported AB phenomenon. For each lag condition, we found
the proportion of responses (in 15° bins) between −90° and +90° for the orien-
tation errors (see Figs. 2a and 4a) and fit Gaussian functions with a constant offset
(Eq. 1) using non-linear least square regression to quantify these results for each
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participant (Figs. 2b and 4b):

GðxÞ ¼ A exp �ðx � μÞ2
2σ2

� �
þ C; ð1Þ

where A is the gain, reflecting the proportion of responses around the reported
orientation, μ is the orientation on which the function is centred (in degrees), σ is
the standard deviation (degrees), which provides an index of the precision of
participants’ responses, and C is a constant used to account for changes in the
guessing rate. Using different bin sizes yields the same pattern of results suggesting
this procedure did not bias the results (Supplementary Fig. 3). We used a Gaussian
with a constant offset to characterise behavioural performance, as it captures the
distribution of errors well (median R2= 0.76, SE= 0.04 in Experiment 1). This
model allows the gain, width, bias and guessing rates to vary independently
(Supplementary Fig. 1), unlike the function used in a previous study using a
continuous report measure for the AB30. Most importantly, the function we
implemented can also be used to characterise the forward encoding results, thus

allowing a direct comparison of the AB based upon behavioural and neural
measures.

We used a regression-based approach63 (see Figs. 2d and 4c) to determine how
targets and distractors within each RSVP stream influenced behavioural responses.
To do this, we aligned the orientations of both distractor and target items from 4
items prior to the appearance of the target through to 9 items after the appearance
of the target to construct a regression matrix of the presented orientations. The
regression matrix was converted to complex numbers (to account for circularity of
orientations) using Eq. 2:

C1 ¼ expð1i CÞ; ð2Þ
where C is the regression matrix (in radians) and 1i is an imaginary unit. Standard
linear regression was used to determine how the orientations of the items affected
the reported orientation using Eq. 3:

W ¼ C1 C
T
1

� ��1
CT
1 R; ð3Þ
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Fig. 9 Schematic illustrating the forward encoding procedure used to estimate feature-selectivity for orientation in Experiment 2. a A basis set of the
nine channels used to model feature (orientation) selectivity. b The basis set was used to find the expected response (regression coefficients) for each
different RSVP item in every trial, for each EEG electrode (three electrodes are shown here for a single example participant). Three trials are shown for the
corresponding gratings. c Ordinary least squares regression was used to find regression weights for the orientation channels across trials for each EEG
electrode (three electrodes are shown here for a single example participant). d Shrinkage matrix that the weights were divided by to perform regularisation,
to account for correlated activity between electrodes. e The regression weights were applied to predict the presented orientation. Neural activity
(headmaps) from two trials, with the channel responses for those trials. Dotted lines indicate the presented orientations. f Applying this procedure to each
time point gives the time course of feature-(orientation) selectivity (for one participant). Trials have been binned in 20º intervals, with the dotted lines
representing the presented orientation in those trials. On the y-axis, 0 ms represents the onset of the item within the RSVP stream. Feature selectivity
emerged around 75ms after stimulus presentation. g Modified Gaussian functions (equation) were used to quantify the tuning. The colours of the free
parameters in the equation correspond to the relevant components of the tuning curve below.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14107-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:434 | https://doi.org/10.1038/s41467-019-14107-z | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


where R is the reported orientation (in radians). This was done separately for T1
and T2 reports, with a higher regression weight indicating the item was more
influential in determining the reported orientation.

To determine whether the finding that the orientations of T1 and T2 influenced
the reported orientation was due to participants integrating the other target or the
surrounding distractors (Fig. 3), we found the difference in orientation between the
target of interest and the other item (either target or distractor) and the orientation
error for each trial. This showed an orientation-tuned effect characteristic of
integration. To quantitatively determine the magnitude of this effect, we fit first-
derivative Gaussian functions (D1; Eq. 4) to these responses36–38:

D1ðxÞ ¼ A ´
1
σ
´ x � μ ´ exp � x � μ2

2σ2

� �
; ð4Þ

where A is the gain, μ is the orientation on which the function is centred (in
degrees) and σ is the standard deviation (degrees).

Forward encoding modelling. Forward encoding modelling was used to recover
orientation-selective responses from the pattern of EEG activity for both target and
distractor items in the RSVP stream. This technique has been used previously to
reconstruct colour16, spatial15 and orientation19 selectivity from timeseries data
acquired through fMRI. More recently, the same approach has been used to encode
orientation9,12,13 and spatial14 information contained within MEG and EEG data,
which have better temporal resolution than fMRI.

We used the orientations of the epoched data segments to construct a regression
matrix with 9 regression coefficients, one for each of the orientations (Fig. 9a). This
regression matrix was convolved with a tuned set of nine basis functions (half
cosine functions raised to the eighth power9,10,13, Eq. 5) centred from 0° to 160° in
20° steps.

F xð Þ ¼ cosðx � μÞ8; ð5Þ
where μ is the orientation on which the channel is centred, and x are orientations
from 0º to 180º in 1º steps.

This tuned regression matrix was used to measure orientation information either
across trials or in epoched segments. This was done by solving the linear Eq. (6):

B1 ¼ WC1; ð6Þ
where B1 (64 sensors ×N training trials) is the electrode data for the training set, C1

(9 channels ×N training trials) is the tuned channel response across the training
trials and W is the weight matrix for the sensors to be estimated (64 sensors × 9
channels). Following methods recently introduced for M/EEG analysis, we
separately estimated the weights associated with each channel individually13,64. W
was estimated using least square regression to solve Eq. (7):

W ¼ C1 C
T
1

� ��1
CT
1 B1: ð7Þ

Following this previous work11,13,64, we removed the correlations between
sensors, as these add noise to the linear equation. To do this, we first estimated the
noise correlation between electrodes and removed this component through
regularisation65,66 by dividing the weights by the shrinkage matrix. The channel
response in the test set C2 (9 channels × N test trials) was estimated using the
weights in (7) and applied to activity in B2 (64 sensors × N test trials), as per Eq. 8:

C2 ¼ W WT
� �

WTB2: ð8Þ
To avoid overfitting, we used cross validation (10-fold in the initial whole-trial

analysis, and 20-fold when the item presentations were stacked), where X-1 of
epochs were used to train the model, and this was then tested on the remaining (X)
epoch. This process was repeated until all epochs had served as both test and
training trials. We also repeated this procedure for each point in the epoch to
determine time-resolved feature-selectivity. To re-align the trials with the exact
presented orientation, we reconstructed the item representation15 by multiplying
the channel weights (9 channels × time × trial) against the basis set (180
orientations × 9 channels). This resulted in a 180 (−89° to 90°) Orientations × Trial
× Time reconstruction. In order to average across trials, the orientation dimension
was shifted so that 0º corresponded to the presented orientation in each trial.

For the initial encoding analysis (Fig. 5), to determine whether feature
selectivity could be recovered for each RSVP item we used 20 encoding models
(one for each item position in the stream) with 600 trials. We trained and tested
each model across the entire 2250 ms of the trial to determine when feature
selectivity emerged for that RSVP item. This analysis verified that each RSVP item
could be encoded independently. We aligned all RSVP items across trials (N=
12,000; 600 trials by 20 items) and used a fixed encoding model for training and
testing67,68 (Figs. 6–8). This meant we trained and tested all encoding models
across all items (both targets and distractors) regardless of trial type12,13.

Aligned item reconstructions were then averaged over the relevant condition
(Lag, Accuracy or item position) and smoothed using a Gaussian with a temporal
kernel of 6 ms10,13 to quantify feature selectivity. The Gaussian functions were fit,
using least square regression, to quantify different parameters of feature selectivity
across timepoints, as per Eq. 1, where A is the gain representing the amount of
feature selective activity, μ is the orientation on which the function is centred (in
degrees), σ is the width (degrees) and C is a constant used to account for non-
feature selective baseline shifts.

Univariate orientation selectivity analysis. We used a univariate selectivity
analysis10 to determine the topography associated with orientation-selective
activity for targets and distractors (Fig. 8b). Data were epoched in the same manner
as in the forward encoding model where EEG activity was aligned with each stream
item. We separated these epochs into target and distractor presentations to
determine whether these two types of stimulus were processed differently. All
target presentations were used in training (1200 in total; 600 trials with two targets
in each), together with a pseudo-random selection of the same number of distractor
items. To determine the topography, we used a general linear model to estimate
orientation selectivity for each sensor from the sine and cosine of the presentation
orientation, and a constant regressor in each presentation. From the weights of the
two orientation coefficients we calculated selectivity using Eq. 9:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1cos2 þ B2sin

2
q

; ð9Þ
A was derived through permutation testing in which the design matrix was shuffled
(N= 1000) and weights calculated. The non-permuted weights were ranked and
compared with the permutation distribution, thus enabling calculation of the z-
scored difference. To calculate group-level effects, cluster-based sign-flipping per-
mutation testing (N= 1500) across electrodes and time was implemented in
Fieldtrip69 to determine whether the topographies differed between conditions.

Statistics. All statistical tests were two-sided, and Bonferroni adjustments were
used to correct for multiple comparisons where noted. Non-parametric sign per-
mutation tests69,70 were used to determine differences in the time courses of feature
selectivity (Figs. 5 and 6) between conditions. The sign of the data was randomly
flipped (N= 20,000), with equal probability, to create a null distribution. Cluster-
based permutation testing was used to correct for multiple comparisons over the
timeseries, with a cluster-form threshold of p < 0.05 and significance threshold of p
< 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The EEG and behavioural data for both experiments are available at: https://osf.io/f9g6h.
A reporting summary for this Article is available as a Supplementary Information file.

Code availability
The code associated with this paper is available at: https://github.com/MatthewFTang/
AttentionalBlinkForwardEncoding.
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