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Automation can improve operator performance and reduce workload, but can also degrade operator
situation awareness (SA) and the ability to regain manual control. In 3 experiments, we examined the
extent to which automation could be designed to benefit performance while ensuring that individuals
maintained SA and could regain manual control. Participants completed a simulated submarine track
management task under varying task load. The automation was designed to facilitate information
acquisition and analysis, but did not make task decisions. Relative to a condition with no automation, the
continuous use of automation improved performance and reduced subjective workload, but degraded SA.
Automation that was engaged and disengaged by participants as required (adaptable automation)
moderately improved performance and reduced workload relative to no automation, but degraded SA.
Automation engaged and disengaged based on task load (adaptive automation) provided no benefit to
performance or workload, and degraded SA relative to no automation. Automation never led to
significant return-to-manual deficits. However, all types of automation led to degraded performance on
a nonautomated task that shared information processing requirements with automated tasks. Given these
outcomes, further research is urgently required to establish how to design automation to maximize
performance while keeping operators cognitively engaged.

Keywords: adaptable automation, adaptive automation, submarine track management, situation aware-
ness, workload

The term automation has been defined as a system that accom-
plishes (partially or fully) a function that was previously, or
conceivably could be, carried out by a human operator (Parasura-
man, Sheridan, & Wickens, 2000). Automation that supports our
workplaces is designed to alleviate the requirement for humans to
control tasks, to increase system capacity. Examples include flight
management systems in cockpits, robotics in manufacturing and
undersea exploration, military command and control automation,
radar plotting tools in seaboard navigation, image-guided naviga-
tion tools in medical surgery, and separation assurance tools in air
traffic control. Technological advancement and its potential eco-
nomic benefits mean that there is a continuing trend toward re-
quiring humans to deal with larger amounts of information in more

complex work environments using increasingly capable, highly
automated systems (Bindewald, Miller, & Peterson, 2014; Sheri-
dan, 2015).

Researchers have long recognized the potential safety issues
associated with automation (Parasuraman, Molloy, & Singh, 1993;
Rasmussen & Rouse, 1981), particularly under conditions where it
is continually used by operators (static automation/function allo-
cation). To the extent that static automation is reliable and trusted
(Wickens & Dixon, 2007), the automation of a task will exceed
human manual performance and reduce operator workload, partic-
ularly as the degree of automation (DOA) moves across a critical
boundary from “acquiring and analyzing” information to “recom-
mending task actions” (Onnasch, Wickens, Li, & Manzey, 2014).
However, part of the reason static automation reduces workload is
that operators process less of the raw information related to the
task being automated (automation-induced complacency; Para-
suraman & Manzey, 2010; Wickens, Sebok, Li, Sarter, & Gacy,
2015). Automation-induced complacency can compromise the op-
erator’s understanding of their task environment and consequently
their situation awareness (SA; Endsley, 1988). A loss of SA is
problematic when automation is highly, but not perfectly, reliable
because this creates a need for infrequent and unpredictable oper-
ator intervention. Research indicates it can be challenging under
these conditions for operators to regain manual control of previ-
ously automated tasks (Manzey, Reichenbach, & Onnasch, 2012;
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Onnasch et al., 2014). Several accidents have occurred in industry
where humans have failed to adequately regain manual control
(e.g., the grounding of the Royal Majesty off the coast of Nan-
tucket in 1995; Air France 447, which nosedived 38,000 feet into
the Atlantic in 2009).

In this article, three experiments are presented, using simula-
tions of submarine track management, that examine the extent to
which automation could be designed to benefit performance while
ensuring that individuals can maintain SA and regain manual
control of previously automated tasks. Our application domain,
submarine track management, requires submariners to coordinate
the output from the submarine’s passive sonar, with other sensors,
to compile a coherent tactical picture of the position and behavior
of contacts in relation to their own vessel (Ownship) and to
strategic landmarks (Kirschenbaum, 2011). Track management is
similar to an increasing array of work contexts that require oper-
ators to monitor computer screens that display abstract features of
dynamic situations occurring outside of the operator’s actual phys-
ical perceptual experience. Examples include air traffic control,
unmanned vehicle control, and air battle management. In these
work settings, experts typically remain in charge of making task
decisions based upon abstract display information, but increas-
ingly, automation is provided to facilitate information acquisition
and analysis.

The first objective of our research was to examine the extent to
which static automation could benefit performance and reduce
workload, without degrading operator SA or return-to manual
performance. In addition, we were motivated by the practical
concern that there are situations in which operators are required to
perform multiple interdependent tasks, only some of which may be
automated. We reasoned that operators in complex work systems
may find it more difficult to perform nonautomated tasks that share
information processing requirements with concurrently automated
tasks if they are processing less of the raw information related to
the tasks being automated (automation-induced complacency). To
our knowledge, this possibility has never been tested, and we did
so by examining whether the use of static automation impaired
performance on an interdependent nonautomated task.

The second objective of our research was to examine whether
the possible risks of automation to participant SA, interdependent
nonautomated task performance, and return-to-manual perfor-
mance, could be minimized by designing automation to be used
intermittently rather than continuously, depending on perceived
(adaptable automation; Scerbo, 2001) or objective (adaptive au-
tomation; (Kaber & Riley, 1999; Parasuraman, Mouloua, & Mol-
loy, 1996; Scerbo, 1996) task demands. The rationale for imple-
menting adaptable and adaptive automation is to engage
automation only when task demands rise, in order to facilitate
performance and decrease workload. Automation is subsequently
disengaged when task demands decrease, to encourage operators to
update their SA, and maintain their performance on nonautomated
tasks by continuing to adequately attend to the displayed task
information relevant to the tasks being intermittently automated.

Submarine Track Management and the Degree
of Automation

Personnel on a submarine usually do not have visual contact
with the various vessels, landmarks or other navigational objects

(known as contacts) that may be located around them. Conse-
quently, they must rely on information gathered from the subma-
rine sensors to create their own “view” of their surrounding area.
The submarine command team comprises a number of departments
including navigation, communications, and sensor and weapons
systems, all coordinated by the watch leader. The track manager
uses information from outstations, including passive sonar and the
periscope, to create a tactical picture of the position and behavior
of contacts (their bearing, range, course, and speed) relative to the
submarine and to strategic landmarks. The track manager effec-
tively acts as the information manager, informing the command
team’s decision making with respect to maneuvering the subma-
rine during missions (Kirschenbaum, 2011; Stanton, 2014).

The core tasks of the submarine track manager simulated in the
current experiments were developed based on observations and
interviews with Royal Australian Navy submariners in real track
management combat systems. Participants in the current study
worked with two displays (see Figure 1). The left monitor pre-
sented a tactical display of the area of operations, including stra-
tegic landmarks, contacts currently detected within the operational
area, and the Ownship represented in the center of the tactical
display. The right display presented a sonar time-bearing plot
(referred to as a waterfall display), representing the bearing of each
contact on the tactical display in relation to Ownship and how
those bearings have changed with time. Participants used these
displays to complete three tasks. The contact “classification” task
required participants to judge how long each contact spent inside
landmarks on the tactical display, to identify a contact as friendly,
merchant and so forth. A second task required participants to
monitor changes in contact heading (course) to determine the
closest point of approach (CPA) of contacts to the Ownship.
Finally, the “dive” task required participants to integrate contact
location and heading information to determine when the submarine
could safely dive.

The degree of automation implemented in the simulation was
derived from a recent classification system defining “more versus
less automation” by Onnasch et al. (2014). Automation can do
more or less “work” (levels of automation; Sheridan & Verplank,
1978) at each of the following four stages of human information
processing (stages of automation; Parasuraman et al., 2000): in-
formation acquisition, information analysis, decision making, and
action execution. Increasing levels within a stage and/or imple-
menting automation at later stages increases the degree of auto-
mation (DOA; Onnasch et al., 2014). Automation in the submarine
control room, and in other settings such as air traffic control, is
typically designed to help the operator acquire and analyze infor-
mation, but not necessarily to make task decisions or execute task
actions. Similarly, automation in the current experiments was
designed to track when contacts first entered strategic areas of
interest or when contacts made heading changes, but task decisions
and their execution were left to manual control.

Will a Low Degree of Static Automation Produce
Benefits and/or Costs?

The potential risks of automation, such as complacency, loss of
vigilance, and loss of SA are well documented (Parasuraman &
Riley, 1997; Parasuraman & Wickens, 2008). The conventional
wisdom has been that the more automation is applied, the greater
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the cost to SA and, potentially, to return-to-manual performance.
Consistent with this, a meta-analysis conducted by Onnasch et al.
(2014) found that the benefits of static automation to routine
performance and workload, during periods when automation func-
tioned reliably, increased with greater DOA but that SA and
performance when participants had to resume manual control
decreased with greater DOA. Specifically, the costs of automation
to SA and return-to-manual performance were more likely to occur
when the DOA crossed the boundary from information acquisition
and analysis to action selection and implementation. Onnasch et al.
(2014) concluded that when automation moves across this “criti-
cal” boundary, the operator is relieved of some or all aspects of
choosing an action and this greatly reduces the extent to which
they monitor the raw situation information processed by the auto-
mation (also see Li, Wickens, Sarter, & Sebok, 2014).

On the basis of these findings, we reasoned that providing our
participants with a relatively low degree of static automation
(information acquisition/analysis) in simulated track management
could benefit performance and reduce workload compared with
when no automation was provided (Experiments 1, 2, and 3).
Moreover, our logic was that engaging participants to make task
decisions, and execute associated actions, should encourage them
at least partially to attend to the raw information related to the
tasks being automated. Thus, we predicted that a relatively low
DOA might not harm operator SA (Experiments 1, 2, and 3) or
return-to-manual performance (Experiment 3), compared with
conditions without automation.

In addition, we examined the impact of static automation on
nonautomated task performance (the dive task). On the one hand,
the anticipated reduction in workload from static automation use

Figure 1. An example submarine track management simulation scenario (Chen, Loft, Huf, & Visser, 2014).
The display on the left is the tactical display which represents the area of operations, with Ownship located at
the center of the tactical display. On the tactical display, the concentric rings indicate the distance from Ownship.
The rings extend in 5-km increments. The parallel white (lighter) lines indicate a shipping lane. The two friendly
sectors are bounded by the blue (thicker) lines. The fishing areas are darker in color, which depicted shallower
waters more likely to have accessible fish. Note that the other two Australian coastal maps used different
physical arrangements of these strategic zones in their area of operations. Eight contacts are displayed in Figure
1. The leader lines projecting from the center of each contact icon indicates the current heading of each contact,
and the contacts are numbered. The red (darker) diamond icon for Contact 18 indicates a contact that has been
classified as an enemy. Contact 17 is a green (darker) triangle because it has been classified as a friendly.
Contacts represented by yellow circles have yet to be classified. The screen on the right is the waterfall display,
which is a sonar time-bearing plot of the history of each contact shown on the tactical display. The waterfall
display provided the bearing of contacts (along the top horizontal axis) in relation to Ownship, and indicated how
those bearings changed with time (on the vertical axis). The waterfall display presented this data as vertical lines
(“sound tracks”), which “grew” down with time, representing track history. Each contact track on the waterfall
display is numbered, and the color matches the classification given to the contact. Participants (or the
automation) could place horizontal lines on the waterfall display when the contact entered an area of interest or
to track how long they have been visible. In Figure 1, the participant has attempted to indicate when several
closest points of approach (CPAs) had occurred by marking the corresponding sound track of that contact with
a cross on the waterfall display. Participants clicked the Dive button to signal the Ownship to dive. When a
contact abrupts off the screen the track for that contact terminates from both displays. The automation was
referred to as track assist. The automation interface (shown at the bottom right of the tactical display) allowed
participants to verify the automation condition in which they were currently operating. Participants click the ON
and OFF buttons to control the automation (track assist) in the adaptable automation condition. From “Static and
Adaptable Automation in Simulated Submarine Track Management,” by S. Chen, S. Loft, S., Huf, and T. Visser,
2014, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58, p. 2281, Thousand Oaks,
CA: SAGE. Copyright 2014 by SAGE Publications. See the online article for the color version of this figure.
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should provide the operator with the spare cognitive capacity to
more effectively manage other nonautomated tasks (Loft, Smith, &
Bhaskara, 2011; Loft, Smith, & Remington, 2013; Manzey et al.,
2012; Rovira, McGarry, & Parasuraman, 2007; Sethumadhavan,
2009). On the other hand, we designed our nonautomated dive task
such that it required the assessment of information also necessary
to complete the classification and CPA tasks (i.e., tracking the
location and the heading of contacts). Thus, performance on the
interdependent dive task could be degraded if participants scruti-
nized contact location and heading information less closely
(automation-induced complacency; Parasuraman & Manzey,
2010; Wickens et al., 2015) when using static automation com-
pared with no automation. To our knowledge, this is the first
research to have actively examined the interaction between auto-
mation and performance on an interdependent nonautomated task.

Adapting Automation to Keep the Operator Engaged

A potential way of mitigating the costs of static automation is to
periodically reallocate automated tasks to human manual control,
in order to increase the extent to which operators update their SA
by attending to the raw information sources feeding the automation
(Farrell & Lewandowsky, 2000; Parasuraman, Galster, Squire,
Furukawa, & Miller, 2005; Wickens et al., 2015). Such a work
system, designed to engage and disengage automation according to
the perceived or objective task demands placed on the operator,
has recently been described as one of the “more important ideas in
the history of human factors/ergonomics” (Hancock et al., 2013, p.
11). Readers may question how intermittent automation usage
could possibly yield benefits equal to the continuous use of auto-
mation. The answer is that, in many operational settings, it is
common for task demands to rise and fall periodically (Loft,
Sanderson, Neal, & Mooij, 2007; Remington, Folk, & Boehm-
Davis, 2012). Thus, when task demands fall, automation could be
reduced so that the operator completes tasks manually, keeping the
operator engaged, facilitating better SA, and bolstering competent
task completion. The key question is how to balance timely en-
gagement of automation when task demands rise, in order to
maximize performance, with disengagement when demands de-
crease, to encourage the participant to update their SA.

There are several potential ways to trigger the engagement and
disengagement of automation. An automation trigger might be
based on an operator performance decrement threshold (e.g., Cal-
houn, Ward, & Ruff, 2011), a physiological indicator of operator
workload/stress (e.g., Wilson & Russell, 2007), or a secondary task
measure of workload (Kaber & Riley, 1999). This is known as
adaptive automation. Although evidence suggests that these trig-
gers can be beneficial, a potential problem is that they are all
reactive in that they only engage automation after performance
degrades or after workload is elevated. A better system would be
proactive, engaging automation prior to such problems arising. We
reasoned that operators themselves might be well placed to pro-
actively adapt automation. Thus, in Experiments 1 and 2, we
allowed participants to decide when to engage and disengage
automation—a condition referred to as adaptable automation
(Scerbo, 2001).

Notionally, if adaptable automation can be engaged before prob-
lems arise, operator performance and workload should benefit.
Also, the process of deciding when to use automation might help

maintain SA, thereby reducing return-to-manual deficits. On the
other hand, it is possible that deciding when to engage/disengage
automation may impair performance by increasing cognitive load
(Kaber & Riley, 1999). It is also possible that operators are not
always accurately able to monitor their task demands/performance
on a moment-by-moment basis and thus will have some difficulty
forming effective strategies for invoking automation (i.e., limita-
tions in operator metacognition; Flavell, 1979; Osman, 2010).
Indeed, the evidence to date has been mixed. Sauer, Nickel, and
Wastell (2013) found that adaptable automation facilitated perfor-
mance and reduced workload compared with static automation, but
was no better than adaptive automation. In contrast, several other
studies have reported that adaptable automation decreased perfor-
mance and increased workload compared with adaptive automa-
tion based on physiological triggers (Bailey, Scerbo, Freeman,
Mikulka, & Scott, 2006) or performance (Kidwell, Calhoun, Ruff,
& Parasuraman, 2012).

These mixed results may have another explanation. Prior re-
search examining adaptable automation shares two notable limi-
tations. First, in several studies, automation engaged by the oper-
ator was automatically disengaged after a short interval (in as little
as 10 s; Bailey et al., 2006; Kidwell et al., 2012). Performance and
workload might be more likely to improve if the operator could
also decide when to disengage automation. Second, no studies
have made comparisons between adaptable and no-automation
conditions or measured the potential costs of using adaptable
automation to SA, interdependent nonautomated tasks, or return-
to-manual performance. Thus, a clearer indication of the utility of
adaptable automation is needed to demonstrate that adaptable
automation can benefit performance and workload compared with
no-automation conditions, and without costs to SA, interdependent
nonautomated tasks, or return-to-manual performance.

Experiment 1

In Experiment 1, we examined the effectiveness of static and
adaptable automation in a simulated submarine track management
task. Task load (number of displayed contacts) was systematically
varied. Participants monitored two adjacent displays to perform
three tasks (see Figure 1). The contact classification task required
participants to judge how long each contact spent inside certain
geospatial boundaries, which defined contacts as friendly, mer-
chant and so forth The CPA task required participants to mark the
closest point of approach of contacts to the Ownship. Under some
conditions, these tasks were supported by a relatively low degree
of automation (information acquisition/analysis), which eliminated
the need for participants to monitor when contacts first entered an
area of interest (classification task) or to monitor contact heading
(CPA task). The dive task, which was not supported by automa-
tion, required participants to be aware of the location and heading
of all contacts, both in relation to other contacts, and to the
Ownship.

Participants completed three 27.5-min scenarios, each corre-
sponding to different Australian coastal maps. A within-subjects
design was used: Each participant completed a no-automation, a
static automation, and an adaptable automation condition. SA was
measured using the Situation Present Assessment Method (SPAM;
Durso & Dattel, 2004). The SPAM measure has been shown to
predict performance in simulations of track management, without
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interfering with primary task performance (Loft, Bowden, et al.,
2015). To measure subjective workload, the Air Traffic Workload
Input Technique (ATWIT) was administered several times during
each scenario, and the National Aeronautics and Space Adminis-
tration Task Load Index (NASA-TLX) was administered after
each scenario. We were mindful of participants potentially over-
using the automation to make their experience in the experiment
easier. To prevent this, we limited the time the automation could
be used to 10 min for each scenario (on the basis of results from
a pilot experiment). Participants were informed of this limit and
were encouraged to use automation only when necessary to main-
tain performance.

Method

Participants. Participants were 38 (15 females) undergradu-
ate psychology students (M ! 19.68 years, SD ! 3.56) who
volunteered to take part in the experiment for course credit.

Simulated submarine track management task. Participants
performed a simulated track management task (see Figure 1). The
left tactical display was a bird’s eye view of the area and displayed
concentric range rings indicating distance from the center point,
that is, the location of Ownship. The location and heading of the
contacts was presented on the tactical display. The right waterfall
display provided the bearing of contacts (along the top horizontal
axis) in relation to Ownship and indicated how those bearings
changed with time (on the vertical axis). The waterfall display
presented this data as vertical lines (“sound tracks”), which “grew”
down with time, representing track history. The number of con-
tacts on the displays (task load) periodically increased (peaking at
eight contacts) and decreased three times (plateauing at one)
during each 27.5-min scenario.

The automation was referred to as track assist. The automation
interface at the bottom right of the tactical display (illustrated in
Figure 2a) allowed participants to verify the automation condition
in which they were currently operating. In the adaptable condition,
participants engaged and disengaged automation by clicking the
ON and OFF button. A countdown clock was provided that indi-
cated the available automation time remaining.

Contact classification task. Participants classified contacts
according to their movement on the tactical display. Contacts were

classified after they had spent more than two continuous minutes
within a specific area of the tactical display. A contact was a
“friendly” if it spent more than 2 continuous min within the sectors
on the tactical display bounded by the blue lines. A contact was a
“merchant” if it spent more than 2 continuous min on the tactical
display within the “shipping lane” denoted by the two parallel
white lines. A contact was a “trawler” if it spent more than 2
continuous min on the tactical display within the “shallow” dark
blue areas. A contact was an “enemy” if, in the first 4 min of its
presentation, it had not spent at least 1 continuous min in any
classification zone. As shown in Figure 1, to help determine
whether a contact had spent more than 2 min in an area of interest,
participants were advised that they could place horizontal lines on
the waterfall display when the contact entered an area of interest.
Once that line reached the 2-min indicator on the waterfall display,
the contact could be classified as friendly, merchant or trawler.
Participants could also identify enemy contacts by noting that a
contact with no horizontal lines on the waterfall display had
reached the 4-min indicator. Note that the term enemy (a common,
succinct, and easily recognized vernacular) was used instead of
possible hostile, the correct term used by submariners.

A relatively low DOA was used, below the ‘critical boundary’
suggested by Onnasch et al. (2014), supporting the acquisition/
analysis human information processing stage. The automation
reduced the need for participants to determine when contacts
entered an area of interest on the tactical display by placing
horizontal timing lines automatically on the waterfall display when
a contact entered an area of interest. However, the automation
served no further function. The participant still had to monitor the
subsequent behavior of the contacts after they entered the area to
ensure they continuously remained in that area during the desig-
nated time period before the horizontal blue line reached the 2-min
mark on the waterfall display (or departed in under 1min if the
contact was a potential enemy), to make the classification decision.
This DOA also required participants to remember which horizontal
blue line on the waterfall display was associated with which
contact on the tactical display. When automation was disengaged,
the horizontal lines on the waterfall display remained but new lines
had to be manually entered by the participant.

Figure 2. The automation interface buttons for each experiment, which were located at the bottom right of the
tactical display. For Experiments 1 and 2 (within-subjects design), participants could see which condition they
were operating under by the color of the button label (i.e., a red (darker gray) button meant automation was
activated). The adaptable condition in Experiments 1 and 2 (ADAPT), and the adaptable operator-triggered
(ADAPT-O) condition in Experiment 3 could be activated and deactivated by the ON and OFF buttons. In
Experiment 1, which had limited automation (10 min) a countdown clock was provided. In Experiment 3, the
adaptive condition was indicated by the button labeled ADAPT-M (adaptive machine-triggered). See the online
article for the color version of this figure.
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CPA task. A CPA was defined as the point at which a contact
would be at its closest to Ownship. This was essentially the point
where a contact heading toward Ownship (e.g., Contact 22 in
Figure 1) turned away from the Ownship. The CPA task required
participants to (a) track contacts heading toward Ownship, (b)
track when these contacts made heading changes, and (c) indicate
the time that the CPA occurred by marking the corresponding
sound track of that contact on the waterfall display. Each of the 24
contacts presented in each scenario had one CPA each.

The CPA automation supported the information acquisition/
analysis stage. When automation was engaged a track history line,
resembling an extended ship’s wake, was visible on each contact
on the tactical display. This reduced the need for the participant to
track which contacts made heading changes; however, the auto-
mation served no further function. To make accurate CPA deci-
sions, participants needed to mark accurately the timing of the
CPA on the waterfall display, and the CPA automation did not
interpret the track history lines or alert the participant to when a
heading change had occurred. When the automation was turned off
in the adaptable automation condition, all track history lines re-
mained on the tactical display but were not updated to reflect
further contact movement.

Dive task. The dive task was not automated. Participants were
instructed to dive the submarine when (a) all contacts on the
tactical display were heading in the same direction and (b) one of
the contacts was heading directly toward Ownship. This required
participants to be aware of the location and relative headings of
contacts, both in relation to other contacts and to Ownship. The
time periods that the dive conditions were met were the “dive
windows.” Dive-window durations varied between 10 s and 30 s.
There were 9 or 10 dive windows per scenario. Participants clicked
the dive button to signal the Ownship to dive.

Measures.
SA. SA was measured six times during each scenario. SA

queries for information related to each of the three tasks and each
of the three SA levels (Endsley, 1995a, 1995b) were presented.
Although not traditionally used by researchers deploying SPAM,
we found Endsley’s definitions of SA levels useful in developing
our SPAM queries. The six SPAM queries used per scenario were
taken from the pool of SA questions presented in Table 1. The
SPAM queries were delivered over headphones. SPAM distin-
guishes workload from SA by warning the operator that a query is
in the queue and waiting until the operator accepts the query
(Durso & Dattel, 2004). Before a SPAM query was presented, the

participant was asked “Are you ready for a question?” An accom-
panying “yes” and “no” box appeared on screen, and the partici-
pant would click to respond to indicate that he or she was ready to
accept the question. The time taken between ready prompt audio
and when the yes box was clicked is referred to as SPAM accept
time and often correlates with subjective workload (Loft, Bowden,
et al., 2015; Vu et al., 2012). SPAM response time (RT) is
measured as the time between when the experimenter completes
asking the question and the time the participant responds. The
logic behind SPAM is that participants with better SA would know
where to find the correct answer to a question about the situation
on the screen faster and/or more accurately (Durso & Dattel, 2004;
Loft, Bowden, et al., 2015).

Workload. There were two subjective measures of workload.
The ATWIT (Stein, 1985) was presented on the tactical display
every minute, and participants had 10 s to click a workload level
between 1 and 10, described as very low (1 to 2), moderate (3
through 5), relatively high (6 through 8), and very high (9 to 10).
The presentation of the scale did not prevent participants from
completing tasks. The NASA TLX (Hart & Staveland, 1987) was
completed after each scenario. Participants rated their workload on
a 20-point scale on six dimensions of workload: mental demands,
physical demands, temporal demands, own performance, effort,
and frustration. Participants then indicated the degree to which
each of these six dimensions was “the more important contributor
to workload” in pairwise comparisons between the dimensions.
The overall NASA TLX workload score was calculated by multi-
plying the resulting weighting of each dimension with the corre-
sponding rating, then dividing the total by the number of pairwise
comparisons.

Trust in automation. History-based trust (trust evolved from
interaction with the automation) was measured with a six-item
questionnaire. The questionnaire was adapted from Merritt (2011).
The items were altered to refer to the track assist automation and
included items such as “I can depend on track assist,” “I have
confidence in the information given by track assist,” or “I can rely
on track assist to behave in consistent ways.” This history-based
trust was measured after each automated scenario was completed.
Participants responded to each item via a 5-point Likert scale (1 !
strongly agree to 5 ! strongly disagree).

Procedure. Participants completed two 2.5-hr time slots on
consecutive days. On Day 1, they completed a number of individ-
ual differences measures (e.g., working memory, personality), as
part of a different research project. After this, training started with

Table 1
The SPAM (Situation Present Assessment Method) Queries Used to Measure Participant Situation Awareness in Experiment 1

SA level SPAM queries

1 Which vessel is closest to a Y zone? Has X been visible for more than 4 minutes?
Is X heading toward a Y zone? Is X heading towards/away from you?
Is X in a Y zone? Which vessel is heading directly towards you?

2 Has X been in a Y zone for more than 1 minute? Which vessel had the most recent kink in its sound track?
Which vessel most recently crossed a classification boundary? Are any vessels on the same course?

3 Could X be within the Y zone in 4 min time? Which vessel is most likely to show the next CPA?
Could X cross a boundary within 2 min? Which vessel requires a course change to open a dive window?
Which unclassified vessel is most likely to be a

trawler/friendly/enemy/merchant?

Note. SPAM ! Situation Present Assessment Method; CPA ! Closest Point of Approach.
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a 40-min audiovisual PowerPoint presentation that included a
number of “learning checks” that had to be answered correctly
before the presentation could continue. This was followed by a
narrated video of the simulation (prerecorded) where all tasks and
the three conditions (none, static, and adaptable) were demon-
strated. Finally, on Day 1 participants completed a 27.5-min prac-
tice scenario. Participants were told to complete the tasks without
engaging automation during the first half of the scenario and then
asked to engage automation during the second half.

On Day 2, participants were presented with a 15-min Power-
Point presentation that reminded them of the pertinent points from
Day 1. Participants then completed the three 27.5-min scenarios,
each of which contained unique contacts presented in different
maps. Each participant completed a no automation condition, a
static automation condition, and an adaptable automation condi-
tion. The order of conditions and the assignment of scenario to
condition were counterbalanced. After each scenario, participants
were asked to complete the NASA TLX and to complete the
history-based trust questionnaire after completing the static auto-
mation and adaptable automation scenarios.

Results and Discussion

The CPA hit rate was the number of CPAs correctly marked on
the waterfall display per scenario, divided by 24 (i.e., the total
number of CPAs presented per scenario). Each time a participant
placed a cross on the waterfall display, the coordinates were
recorded. The CPA cross could be placed at any time 1.5 s before
the actual CPA (to account for the small movement preceding any
course change including a CPA, which could be noticed by the
participant) or subsequent to when the CPA occurred, as long as
the cross was placed on the correct sound track and within a 3-mm
radius of the actual CPA point. Otherwise the cross was recorded
as a false alarm. The exact potential number of contacts and
associated events to make a CPA false alarm response was inde-
terminable, but we estimated this parameter. It is more likely a
CPA false alarm would be made in response to a contact course
change. For each scenario, there were 69, 71, or 73 total course
changes. Accordingly, the false alarm rate was estimated to be the
number of false alarms, divided by the number of course changes
for that scenario (minus 24, which was the actual number of
CPAs). CPA performance was then calculated by subtracting the
CPA false alarm rate from the CPA hit rate. CPA RTs (and RTs for
other tasks and SPAM) were based on correct decisions.

The dive hit rate was the number of correct dive responses made
during dive windows divided by the total number of dive windows
per scenario. The potential number of opportunities to make a dive
response was indeterminable. The most likely time a dive false
alarm response would be made was during a course change, as
course changes were always needed for a dive window to transi-
tion from closed to open. As there were fewer dive windows than
CPAs, and because all contacts needed to be on the same heading
for a dive window to open, it was not likely every course change
would have been mistaken for a dive window. Consequently, we
calculated the dive false alarm rate as the number of dive false
alarms divided by half the number of course changes for the
scenario (minus the actual number of dive windows which was 9
or 10). Dive task performance was calculated by subtracting the
dive false alarm rate from the dive hit rate.

The means and 95% within-subject confidence intervals for task
performance, SA, and subjective workload are presented in Table
2. Within-subject confidence intervals for Experiments 1 and 2
were calculated using the method recommended by Morey (2008).
Within-subject design effect sizes for Experiment 1 and 2 were
calculated based on recommendations by Morris and Deshon
(2002). For each dependent variable, we conducted planned con-
trasts that directly evaluated our research questions by comparing
the static automation condition to the no automation condition and
the adaptable automation condition to the no automation condition
(Rosenthal & Rosnow, 1985). These inferential statistics are pre-
sented in Table 2. Estimates of Cohen’s d suggested we had a
power of .97 to detect medium-to-large size effects (Cohen, 1988).

Even with appropriate counterbalancing procedures, dependent
measures in within-subject designs can be impacted by order
effects caused by practice or asymmetric transfer (Poulton, 1982).
We therefore assessed for order effects when comparing the static
automation condition to the no automation condition, and the
adaptable automation condition to the no automation condition. To
do this, we originally included the order of condition presentation
(static automation presented first vs. no automation presented first
or adaptable automation presented first vs. no automation pre-
sented first) as an additional variable in each of the analyses
reported below for Experiment 1. However, we found no reliable
evidence that the order of presentation of condition had a signif-
icant impact on the degree to which static or adaptable automation
influenced performance, SA, or workload in Experiment 1 (small-
est p ! .12). Thus, for brevity, we collapsed across the condition
order variable in the analyses presented in the following text.

Static automation versus no automation. As shown in Table
2, participants were more accurate and faster to classify contacts
when using static automation compared with no automation. Par-
ticipants made more accurate CPA task decisions when using static
automation compared with no automation, but were also slower to
make these CPA task decisions. The slowed CPA decisions likely
reflect the fact that the automated track history allowed partici-
pants the option to detect a CPA well after it had occurred. This
would have improved accuracy but yielded slower RTs because
after making a delayed CPA decision, participants would then have
needed to estimate the correct CPA location to mark on the
waterfall display by using the contact track history on the tactical
display to determine the time passed since the CPA. There was no
difference in dive task accuracy or dive task RT when using static
automation compared with no automation. As shown in Figure 3,
ATWIT scores rose and fell with task load (the number of con-
tacts). Participants reported lower workload on the NASA TLX
and the ATWIT when using static automation compared with no
automation. There was no significant difference between static and
no automation conditions for SPAM accuracy or SPAM RT.

Adaptable automation versus no automation. As shown in
Figure 3, automation usage generally coincided with peaks in task
load and subjective workload, suggesting participants used auto-
mation strategically in response to task demands. However, despite
a total of 10 min of automation being available, on average
participants only used automation for 6.85 min (95% CI [5.81,
7.89]).

On the classification task, there was no difference in accuracy
or RT when using adaptable automation compared with no
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automation. However, participants made more accurate CPA
decisions when using adaptable automation compared with no
automation. There was no difference in CPA task RT when
using adaptable automation compared with no automation. Dive
task accuracy and RT did not differ between adaptable and no
automation conditions.

NASA TLX scores were lower when using adaptable compared
with no automation. However, this benefit only approached sig-
nificance when measured by ATWIT. There was no difference in
SPAM accuracy or SPAM RT when participants used adaptable
automation compared with no automation.

Trust and automation preferences. There was no significant
difference in the history-based automation trust between the static
(M ! 4.44, 95% CI [4.33, 4.55]) and adaptable (M ! 4.25, [4.14,
4.37]) automation conditions, t(37) ! 1.66, p ! .10, d ! 0.27. Of
the 38 participants, 22 (58%) preferred static automation, 13 (34%)
preferred adaptable automation, and 3 (8%) preferred no automa-
tion. Postexperiment verbal reports indicated that many partici-
pants disliked adaptable automation because of the effort required
to budget automation time.

Experiment 2

In Experiment 1 we found that a low degree of static automation
reduced workload and improved performance, without any cost to
SA or to nonautomated dive task performance. This suggests it
may be possible to design static automation to provide significant
benefits without associated costs. An alternative explanation for
the results, however, is that the SPAM measure lacked the sensi-
tivity to detect underlying changes in SA. To test this possibility,
we replicated the paradigm in Experiment 1, while using the
Situation Awareness Global Assessment Technique (SAGAT;
Endsley, 1995b) to measure SA.

The SAGAT method involves periodically pausing and blanking
the task display in order to query participants about the current and
likely future state of the simulated environment. Concurrent evi-
dence from our laboratory found that SA as measured by SAGAT
was a stronger predictor of track management performance than
SA as measured by SPAM (Loft, Bowden, et al., 2015). SAGAT
might be more predictive because the greater number of queries
collected with SAGAT provides a more reliable SA estimate,

Table 2
Descriptive and Inferential Statistics for Performance, Situation Awareness, and Subjective
Workload in Experiment 1

Task Condition M 95% CI T p Cohens d

Classification [Hit] None .84 [.80, .87]
Static .91 [.87, .94] 3.08 .004! .54
Adaptable .85 [.83, .88] .91 .37 .08

Classification [RT] None 24.91 [21.47, 28.35]
Static 18.92 [15.85, 21.99] "2.96 .005! ".50
Adaptable 24.21 [21.55, 26.87] ".38 .70 ".08

CPA [Hit–FA] None .31 [.25, .38]
Static .51 [.44, .57] 4.95 #.001! .81
Adaptable .42 [.35, .47] 2.68 .01! .45

CPA [RT] None 18.27 [14.13, 22.42]
Static 23.16 [19.93, 26.39] 2.07 .046! .34
Adaptable 19.44 [16.72, 22.14] .55 .58 .09

Dive [Hit–FA] None .78 [.74, .82]
Static .76 [.70, .81] ".77 .45 ".22
Adaptable .77 [.71, .82] ".38 .71 ".10

Dive [RT] None 8.94 [7.67, 10.21]
Static 9.31 [8.15, 10.47] .55 .59 .09
Adaptable 9.13 [7.74, 10.52] .23 .82 .05

NASA TLX None 63.46 [60.11, 66.80]
Static 54.18 [50.78, 57.56] "4.24 #.001! ".71
Adaptable 59.76 [57.74, 61.78] "2.49 .02! ".40

ATWIT None 5.04 [4.83, 5.24]
Static 4.32 [4.08, 4.56] "5.05 #.001! ".82
Adaptable 4.85 [4.69, 5.01] "1.99 .054 ".33

SPAM [Accuracy] None .88 [.82, .94]
Static .92 [.88, .97] 1.40 .17 .23
Adaptable .92 [.87, .96] 1.24 .22 .20

SPAM [RT] None 2.78 [2.44, 3.09]
Static 2.93 [2.62, 3.23] .87 .39 .18
Adaptable 2.87 [2.53, 3.19] .49 .63 .12

Note. The 95% within-subject confidence intervals are presented in parentheses (Morey, 2008). The inferential
statistics present the planned contrasts between the static automation condition and the no automation condition
and the adaptable automation condition and the no automation condition for each dependent variable. The
degrees of freedom for each planned contrast was 37. CPA ! Closest Point of Approach; RT ! Response Time
in seconds; FA ! False Alarm; NASA TLX ! National Aeronautics and Space Administration Task Load Index;
ATWIT Air Traffic Workload Input Technique; SPAM ! Situation Present Assessment Method.
! p # .05.
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Figure 3. The task load, the workload measured by Air Traffic Workload Input Technique (ATWIT) in all three
conditions (top plot) and the times during which adaptable automation was used (bottom plot) during Experiment 1.
The number of contacts is shown by the light gray line and rises and falls three times. The workload probe (ATWIT)
was presented every minute with a maximum of 27 data points over the 27.5 min (maximum of 1,026 workload points
per automation condition when the 38 participants’ data was combined). The ATWIT presentation times were
identical for each scenario. A locally weighted regression (loess) procedure was used to fit the regression line (solid
lines) visible in this Figure (for detail see Cleveland & Devlin, 1988). The loess method was used in the ‘stat_smooth’
function in R with the span parameter (degree of smoothing) set at 0.5. The light gray line is the total number of
contacts that were visible at the time. The bottom plot indicates the 30-s blocks during which automation was activated
in the adaptable condition for each participant (a 30-s block is coded green (dark gray) when automation was used at
some point in time during that 30 s, and coded white when automation was not used at any time during that 30-s time
period). See the online article for the color version of this figure.
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and/or because SAGAT directly taps into participants’ memory for
the state of the track management display (Loft, Bowden, et al.,
2015). The greater number of SA queries posed to participants
through the use of SAGAT also provided an opportunity to explore
the relationship between SA and workload as a function of vari-
ation in task load (Vidulich & Tsang, 2012; Wickens, 2008). It
should also be noted that no prior studies have reported any
adverse effects of SAGAT administration on primary task perfor-
mance (e.g., Loft, Bowden, et al., 2015; Strybel, Vu, Kraft, &
Minakata, 2008). Thus we have no reason to believe that the
change in SA measure in Experiment 2 would adversely affect
primary task performance.

In Experiment 1, the use of adaptable automation provided
marginal benefits to performance (facilitating only one of two
tasks) and to workload (lowering workload on only one of two
measures). However, it is possible that the 10-min limit placed on
automation usage imposed an unnecessary mental burden on par-
ticipants, which may have offset some of the benefits the automa-
tion provided. The limit was imposed to reduce the potential for
overuse of automation, but this control might have been unneces-
sary because participants were reluctant to use automation (on
average they used less than 7 min of the available 10 min of
automation in Experiment 1). Therefore, in Experiment 2 we
informed participants that there was no time limit for automation
usage in the adaptable condition.

Method

Participants. Participants were 43 undergraduate psychology
students (21 female; M ! 20.71 years, SD ! 5.95) who volun-
teered to take part in the experiment for course credit. Data from
three participants were not included in the analysis. One partici-
pant believed the automation was engaged when it was not when
using adaptable automation and therefore did not engage automa-
tion. One participant did not make a single correct CPA or clas-
sification. The third participant had difficulty hearing, understand-
ing the task, and forgot her glasses.

Task, measures, and procedure. The simulation and training
were identical to Experiment 1, with the following exceptions.
First, there was no time limit for automation use, and participants
were instead instructed to use adaptable automation as required. As

a result, the countdown clock located in the track assist automation
interface in Experiment 1 was removed (see Figure 2b). Second,
SAGAT was used to measure SA. During each scenario the sim-
ulation was “frozen” six times. During a freeze, the contact sym-
bols would disappear from the tactical display, the sound tracks
would disappear from the waterfall display and questions would
appear at the top of the tactical display. Seven SAGAT queries
were delivered during each freeze. The first question always asked
participants to mark on the tactical display where they thought a
randomly preselected contact was located. Two questions each
then targeted the SA required for classification, CPA, and the dive
task. The six SA queries equally represented the three levels of SA
(two queries per SA level). The SA queries were taken from the
pool of queries presented in Table 3.

SAGAT allowed us to examine how SA covaried with workload
and task load, by using a line of best fit on a scatterplot for each
SAGAT freeze. This was possible because each SAGAT freeze
yielded a correct percentage score. The SAGAT scores therefore
provided a spread of SA scores for each SA query point on the
same vertical scale as workload (each SAGAT percentage score
was multiplied by 10 to match the ATWIT scale). SAGAT scores
for the three scenarios were combined for each condition so there
were 18 SAGAT scores across each 27.5-min automation condi-
tion per participant (the timing of the six SAGAT freezes per
scenario was set across the three scenarios so that when combined,
they occurred somewhat regularly over the 27.5 min). A locally
weighted regression (loess) procedure was used to fit a regression
line (Cleveland & Devlin, 1988) on the resulting 240 SAGAT
scores per automation condition (six SAGAT scores for each of the
40 participants).

Results

As in Experiment 1, for each dependent variable, we conducted
planned contrasts that directly evaluated our research questions by
comparing the static automation condition to the no automation
condition, and the adaptable condition to the no automation con-
dition. The means, 95% within-subject confidence intervals, and
inferential statistics for task performance, SA, and subjective
workload are presented in Table 4. Estimates of Cohen’s d sug-
gested we had a power of .98 to detect medium-to-large size

Table 3
The SAGAT Queries Used to Measure Participant Situation Awareness in Experiments 2 and 3

SA level SAGAT queries

1 Which vessel is currently in a Y zone? How many vessels are heading away
from you?

How many vessels are on the same course?

Is vessel X currently in a Y zone? Is the vessel at bearing X heading
towards/away from you?

Are any vessels heading directly towards
you?

2 Is vessel X within 2 minutes from an X zone? Has vessel X had any kinks in its
soundtrack?

Which vessel is currently heading directly
towards you?

Which vessel most recently crossed a classification
boundary line?

How many times has vessel X
changed course?

Are vessels X and Y heading in the same
direction?

3 Could vessel X cross a boundary within 4 min time? Which vessel would make a CPA if
it turned to a heading of xxx?

If all vessels turned onto a course of xxx,
which vessel would be heading directly
towards you?

Which unclassified vessel is most likely to be a
trawler/friendly/enemy/merchant?

Would a CPA be made for vessel X
if it turned to a heading of xxx?

Would vessel X head directly towards you
if it turned to a heading of xxx?

Note. SA ! situational awareness; SAGAT ! Situation Awareness Global Assessment Technique; CPA ! closest point of approach.
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effects (Cohen, 1988). We used the same procedure as Experiment
1 to test for order effects (smallest p ! .08).

Static automation versus no Automation. Participants were
more accurate and faster to make classifications when using static
automation compared with no automation. Participants made more
accurate CPA task decisions when using static automation com-
pared with no automation. There was no difference in CPA task
RT when using static automation compared with no automation.
There was no difference in dive task accuracy or dive task RT
when using static automation compared with no automation. As
shown in Figure 4, variation in the ATWIT scores coincided with
variation in task load. Participants reported lower workload on the
NASA TLX and on the ATWIT when using static automation
compared with no automation. SAGAT accuracy was poorer when
participants used static automation compared with no automation.

Overall, the findings of improved classification and CPA per-
formance and reduced workload with the use of static automation
replicated Experiment 1. However, in Experiment 2, SA as mea-
sured by SAGAT was significantly impaired by the use of static
automation.

Adaptable automation versus no automation. As shown in
Figure 4, automation usage by participants coincided with task-

load and workload variation, replicating Experiment 1. As ex-
pected, participants also used automation more in Experiment 2
(M ! 11.80 min; 95% CI [10.05, 13.55]) than in Experiment 1
(M ! 6.85 min, [5.81, 7.89]), t(76) ! 4.84, p # .001. However,
automation was still only used for less than half the scenario time.

Participants made more accurate and faster classification deci-
sions when using adaptable automation compared with no auto-
mation. Participants also made more accurate CPA task decisions
when using adaptable compared with no automation, but there was
no difference in CPA task RT. Participants’ accuracy on the dive
task was poorer when they used adaptable automation compared
with no automation. There was no difference in dive task RT
between the adaptable and no automation conditions. Participants
reported lower workload, as indicated by the NASA TLX, when
using adaptable automation compared with no automation. How-
ever, this benefit was not replicated when workload was measured
by ATWIT. There was no significant difference in SAGAT re-
sponse accuracy when participants used adaptable compared with
no automation.

Overall, the performance improvements observed for the adapt-
able condition were more pronounced in Experiment 2 (occurring
for the classification and CPA tasks) compared with Experiment 1

Table 4
Descriptive and Inferential Statistics for Performance, Situation Awareness, and Subjective
Workload in Experiment 2

Task Condition M 95% CI t p Cohens d

Classification [Hit] None .79 [.75, .83]
Static .89 [.86, .92] 4.89 #.001! .81
Adaptable .85 [.81, .89] 2.32 .03! .39

Classification [RT] None 25.97 [23.20, 29.65]
Static 17.92 [15.49, 20.36] "4.84 #.001! ".82
Adaptable 21.02 [17.16, 24.88] "2.04 .048! ".33

CPA [Hit–FA] None .32 [.26, .38]
Static .51 [.45, .57] 4.99 #.001! .81
Adaptable .41 [.37, .45] 3.06 .004! .48

CPA [RT] None 20.79 [15.96, 25.61]
Static 21.16 [17.44, 25.08] .14 .89 .03
Adaptable 21.39 [17.80, 24.98] .23 .82 .04

Dive [Hit–FA] None .81 [.76, .86]
Static .76 [.69, .82] "1.48 ".15 ".22
Adaptable .74 [.69, .79] "2.51 .02! ".40

Dive [RT] None 7.76 [6.74, 8.78]
Static 8.41 [7.48, 9.34] 1.10 .28 .18
Adaptable 8.66 [7.75, 9.56] 1.55 .13 .25

NASA TLX None 68.54 [66.10, 70.98]
Static 58.69 [55.63, 61.75] "5.89 #.001! ".94
Adaptable 63.95 [61.39, 66.51] "3.41 .002! ".55

ATWIT None 5.06 [4.86, 5.27]
Static 4.57 [4.40, 4.74] "4.35 #.001! ".68
Adaptable 5.00 [4.82, 5.19] ".47 .64 ".05

SAGAT [Accuracy] None .60 [.57, .64]
Static .55 [.52, .59] "2.15 .04! ".37
Adaptable .57 [.54, .61] "1.27 .21 ".24

Note. The 95% within-subject confidence intervals are presented in parentheses (Morey, 2008). The inferential
statistics present the planned contrasts between the static automation condition and the no automation condition,
and the adaptable automation condition and the no automation condition, for each of the dependent variables.
The degrees of freedom for each planned contrast was 39. CPA ! closest point of approach; RT ! Response
Time in seconds; FA ! False Alarm; NASA TLX ! National Aeronautics and Space Administration Task Load
Index; ATWIT Air Traffic Workload Input Technique; SAGAT ! Situation Awareness Global Assessment
Technique.
! p # .05.
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Figure 4. The task load, the workload measured by Air Traffic Workload Input Technique (ATWIT) in all
three conditions (top plot) and the times during which adaptable automation was used (bottom plot) during
Experiment 2. The number of contacts is shown by the light gray line and rises and falls three times. The
workload was plotted using the same method used in Experiment 1, with a maximum of 1,080 workload points
per automation condition when the 40 participants’ data was combined. The Situation Awareness Global
Assessment Technique (SAGAT) scores were also combined and plotted (dashed lines) as a function of time,
using the loess procedure. The SAGAT freeze times were staggered over the three scenarios and the resulting
combined 18 situation awareness (SA) data points were spaced somewhat regularly over the 27.5 min. There
were 240 SAGAT freezes (40 participants responding to 6 SAGAT freezes per condition). The relatively fewer
data points for SAGAT (compared with ATWIT) meant that the 95% confidence intervals of this function line
overlapped between automation conditions at some points and the SA function lines are only used to demonstrate
the broad SA changes observed. The bottom plot indicates the 30-s blocks during which automation was
activated in the adaptable condition for each participant (a 30-s block is coded green (dark gray) when
automation was used at some point in time during that 30 s, and coded white when automation was not used at
any time during that 30-s time period). See the online article for the color version of this figure.
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(CPA task only). This is likely because participants used automa-
tion more in Experiment 2 than in Experiment 1. However, these
performance improvements, along with moderate reductions in
workload, came at a cost to the dive task.

Trust and automation preferences. There was no difference
in the history-based trust scores between the static automation
(M ! 4.22; 95% CI [3.94, 4.49]) and adaptable automation con-
dition (M ! 4.12, [3.87, 4.37]), t # 1). Of the 38 participants, 25
(63%) preferred static automation, 13 (28%) preferred adaptable
automation, and 2 (5%) preferred no automation.

SA, workload, and task load. Figure 4 illustrates that SA was
negatively related to task load and workload. Increased task load (and
consequent increased subjective workload) may have increased the
cognitive resources required for maintaining SA (Endsley & Kiris,
1995; Wickens, 2008), and SA may then have become recoverable
when task load/workload decreased. Condition did not moderate the
variation in SA as a function of task load/workload.

Experiment 3

In Experiments 1 and 2 we found that a low degree of static
automation improved performance and reduced workload. How-
ever, static automation significantly degraded participant SA in
Experiment 2 (using the SAGAT measure). Adaptable automation
benefited performance and workload, particularly in Experiment 2
when participants used automation more. There was no evidence
of an impact of adaptable automation on SA. However, in Exper-
iment 2, there was a significant 7% decrement in dive task per-
formance in the adaptable automation condition.

In Experiment 3 we replicated our earlier studies using a between-
subjects design with each participant completing three scenarios in the
same automation condition. The rationale for the between-subjects
design was twofold. First, participants may have found it difficult to
switch between different conditions and this may have introduced
considerable noise in the data. Thus, in Experiment 3 we gave par-
ticipants greater exposure to an exclusive type of automation. We
suspected that participants might use adaptable automation more with
extended task and associated adaptable automation exposure, and that
this could further facilitate performance and reduce workload com-
pared with Experiments 1 and 2.

Second, the use of a between-subjects design allowed us to intro-
duce a “once off” automation removal state in which participants
could no longer use automation. It was not viable to insert an auto-
mation removal state into the within-subject designs of Experiment 1
or 2 because research has shown automation complacency induced
effects to be high before the first automation removal but to dissipate
thereafter (Yeh, Merlo, Wickens, & Brandenburg, 2003). A return-
to-manual control impairment would be indicated if, after automation
removal, a dependent measure outcome was significantly poorer for
participants who had previously used automation compared with
those who had never used automation.

The fact that we found only moderate benefits to performance and
workload with adaptable automation could reflect the added effort
required to decide when to engage and disengage the automation,
which might have diverted attentional resources away from task goals
(Bailey et al., 2006). Participants may also have experienced meta-
cognitive difficulties in deciding when to use automation. We added
an adaptive automation condition to Experiment 3, which removed
the need for the participant to decide when to engage/disengage

automation while still limiting automation to periods of high work-
load. We used an adaptive automation trigger based on the number of
contacts on the track management displays (task load). We designed
the automation to be engaged when there were more than five contacts
on the display, and to be disengaged when there were fewer than six
contacts on the display. This effectively meant that adaptive automa-
tion would be provided for approximately half of each scenario (14.5
min out of 27.5 min), roughly equivalent to the duration and onset/
offset times used by participants in the adaptable automation condi-
tion in Experiment 2.

To our knowledge, de Visser and Parasuraman (2011) have
conducted the only study to have examined task-load adaptive
automation triggers, in a supervisory multiple robotic uninhabited
vehicle control task. They reported that adaptive automation re-
duced workload compared with static automation, and improved
SA compared with no automation condition; but they found no
benefits to performance from adaptive automation. However, the
authors suggested that the task was not difficult enough to allow
performance differences to manifest. We expected to avoid per-
formance ceilings in Experiment 3 because robust performance
differences between conditions were found in our earlier experi-
ments, and thus the adaptive automation could benefit performance
compared with no automation.

Method

Participants. Participants were 118 (75 females) under-
graduate psychology students (M ! 22.47 years, SD ! 7.97)
who volunteered to take part in the experiment for course credit.
The participants were assigned randomly to one of four auto-
mation conditions: No automation (N ! 30), static automation
(N ! 30), adaptable automation (N ! 29), and adaptive auto-
mation (N ! 29).

Simulated submarine track management task. The meth-
ods in Experiment 3 were identical to Experiment 2, with three
exceptions. First, the participants were given training exclusive
to their condition. Second, we included an adaptive automation
condition. In this condition, participants started each scenario
with no automation engaged. The automation was then engaged
automatically when task load increased beyond five contacts
and was disengaged when task load decreased below six con-
tacts. As illustrated in Figure 5, this meant the three automation
durations were 4.67 min, 5.00 min, and 4.83 min (a total of 14.5
min). The automation buttons on the tactical display were
redesigned so that all four conditions were present on the
interface (see Figure 2c).

Finally, during the third scenario the automation was unex-
pectedly removed between the first and second task-load peaks,
which was at the 10.58-min point in a 27.5-min scenario. At the
time of automation removal, a message was overlaid on the
tactical display: “Attention. ENEMY SONAR detected. Track
Assist turned off. Manual tracking is required.” The message
was accompanied by an OK button, so that the participant had
to acknowledge the message. In the no automation condition, a
message was overlaid at the same time. This message read:
“Attention, ENEMY SONAR detected. Keep vigilant and con-
tinue to track vessels.” Automation removal did not occur
concurrently with actions required for any task, ATWIT probes
or SAGAT queries. At the point of automation removal, the

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

13OPTIMIZING THE BALANCE BETWEEN HUMAN AND MACHINE



track history for each contact remained visible but ceased
updating. The timing lines on the waterfall display also re-
mained but no longer appeared at the point when a contact
would enter a new classification area.

Measures.
SA. The SAGAT queries and freeze times were identical to

those in Experiment 2. In the adaptive condition, the automation
engaged at least 10 s before a SAGAT freeze (maximum time was
3.83 min) and disengaged at least 20 s before the next SAGAT
freeze (maximum time was 4.33 min). For each scenario, three of
the six SAGAT freezes occurred when automation was disengaged
and three when automation was engaged.

Workload. As in Experiments 1 and 2, workload was mea-
sured by ATWIT every 60 s. In the adaptive condition, automation
was engaged at least 15 s before the next ATWIT probe and
disengaged at least 25 s before the next ATWIT probe. Automation
removal occurred at 10:35 min in the last scenario, which was 15

s before the next ATWIT probe. There were 10 ATWIT probes
before automation removal and 17 ATWIT probes after automa-
tion removal in every scenario. The NASA TLX was given after
each scenario.

Trust. As in Experiments 1 and 2, the trust questionnaire was
presented after each scenario for the automation conditions.

Procedure. The training on Day 1 was identical to that in
Experiment 1 and 2, except that training was exclusive to condi-
tion. On Day 2, each participant completed three scenarios in their
assigned condition. The order of scenarios was counterbalanced.

Results and Discussion

The means and 95% between-subjects confidence intervals for
performance, SA, and subjective workload are presented in Table
5. In Experiment 3 we report between-subject effect sizes. The
data are divided into time that automation was available (routine

Figure 5. A plot of task load, workload and situation awareness for each of the three scenarios for each of the
four automation conditions (top plot), and the times when the automation was used (30s time blocks in the
bottom plot) for each condition in Experiment 3. The number of contacts is shown by the light gray line and rises
and falls three times. The static automation was activated during the entire first two scenarios and part of the third
scenario, and these time periods are coded in blue (light gray) in Figure 5. The adaptive activation times were
2:25 through 7:05, 11:25 through 16:25, and 20:35 through 25:25 min during the 27:30-min scenario, and these
time periods are coded in black in Figure 5. The bottom plot indicates the 30-s blocks during which automation
was activated in the adaptable condition for each participant (a 30-s block is coded green (dark gray) when
automation was used at some point in time during that 30 s, and coded white when automation was not used at
any time during that 30-s time period). The 27 Air Traffic Workload Input Technique workload probes per
scenario for all participants were combined (max of 810 workload points for the no-automation and the static
conditions, and 783 for the adaptable and adaptive conditions), and plotted for each automation condition. The
Situation Awareness Global Assessment Technique (SAGAT) scores were similarly combined (180 SAGAT
data points for the no-automation and the static conditions and 174 SAGAT data points for the adaptable and
adaptive conditions). The workload (solid lines) and SAGAT (dashed lines) were plotted using the same
multivariate smoothing method as used in Experiments 1 and 2 (loess method using stat_smooth in R, $ ! .5).
See the online version of the article for the color version of this figure.
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state; i.e., the first two and one third scenarios in each condition)
and time that automation was unavailable (removal state; i.e., the
last two thirds of the last scenario in each condition).

As in earlier experiments, we conducted statistical tests that
directly evaluated our research questions by comparing the per-
formance of the static automation condition to the no automation
condition, the adaptable automation condition to the no automation
condition, and the adaptive condition to the no automation condi-
tion, as a function of automation state (routine, removal). To do
this we first ran mixed analyses of variance (ANOVAs), with
automation condition as the between—subjects factor and automa-
tion state as the within-subjects factor (the resulting inferential
statistics are summarized in Table 6). Significant interactions were
followed by comparisons of simple effects conducted separately
for the routine state and the automation removal state. Estimates of
Cohen’s d suggested we had a power of .70 to detect medium-to-
large-size effects (Cohen, 1988).

In the following sections, we report several main effects of
automation state. As shown in Tables 5 and 6, CPA performance
was poorer, and workload as measured by the ATWIT and NASA
TLX increased, during removal states compared with routine
states. This may have occurred because for three of the four
conditions the removal state represented the time that automation
unexpectedly ceased. Furthermore, the automation removal peri-
ods always occurred during the last scenario where participants
may have been most fatigued. It is also possible that participants
may have been temporarily disrupted by the message at the point
of automation removal (or the corresponding message in the no
automation condition). However, it should be noted that we also
found that CPA RT decreased and dive accuracy improved after
automation was removed. For brevity, we do not further refer to
the effects of automation state and instead focus on the main
effects of condition (providing replications of Experiment 1 and 2)
and the interactions.

Static automation versus no automation.
Task performance. A 2 (automation condition; no automa-

tion, static automation) % 2 (automation state; routine, removal)
mixed ANOVA on classification accuracy revealed an interaction.
Under routine states, participants made more accurate classifica-
tion decisions when using static automation compared with no
automation, t(58) ! 3.32, p ! .002, d ! 0.86. In contrast, after
automation removal, there was no difference in the accuracy of
classification between the static automation and the no automation
conditions (t # 1). For classification RT, there was also an inter-
action. During routine states, participants made faster contact
classifications when using static automation compared no automa-
tion, t(58) ! "2.48, p ! .02, d ! "0.64. In contrast, after
automation removal, there was no difference in classification RT
between the static automation condition and the no automation
condition (t # 1). Overall, static automation significantly benefited
classification accuracy and RT under routine states, replicating
Experiments 1 and 2. Because classification accuracy/RT for the
static condition did not degrade below that of the no automation
condition after automation removal, it can be concluded that there
was no return-to-manual deficit.

For CPA task accuracy, there was an interaction. The advantage
to CPA task accuracy from using static automation compared with
no automation (&6%) during routine states was reversed during
automation removal states ("11%). However, there was no statis-T
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tically significant difference in CPA task accuracy between the
static automation condition and the no automation condition for
either the routine state, t(58) ! 1.15, p ! .26, d ! 0.31, or the
removal state, t(58) ! "1.70, p ! .09, d ! "0.46. For CPA task
RT, there was a main effect of condition, with participants making
slower CPA decisions when using static automation compared
with no automation. Overall, the use of static automation did not
significantly improve CPA task accuracy but did significantly
impair CPA task RT. Although there was no statistically signifi-
cant evidence of a return-to-manual deficit for the CPA task, CPA
accuracy was 11% poorer for the static automation condition
compared with the no automation condition after automation was
removed.

For dive task accuracy, there was an interaction. Under the
routine state participants had poorer dive task accuracy when using
static automation compared with no automation, t(58) ! "2.59,
p ! .01, d ! "0.68, but after automation removal there was no
difference in dive accuracy, t # 1. The dive task RT data indicated
a main effect of condition, with participants taking longer to make
correct dive decisions when using static automation compared with
no automation. In summary, there was a significant cost to accu-
racy on the nonautomated dive task by the use of static automation
during routine states, but this cost was eliminated after automation
removal. There was a cost to dive task RT with the use of static
automation during both routine and automation removal states.

Workload. For the ATWIT there was an interaction. The
decrease in workload when using static automation ("6% work-
load) during the routine state reversed during the removal state
(&3%). However, there was no statistical difference in ATWIT
ratings when using static automation compared with no automation
during either routine states, t(58) ! "1.25, p ! .22, d ! "0.32,
or after automation removal (t # 1). The NASA TLX scores of the
first and second routine scenarios were averaged for each partic-
ipant. The NASA TLX score after the third scenario was taken as
the participant’s subjective workload under the automation re-
moval state. There was no main effect of condition and no inter-
action for the NASA TLX. In summary, in contrast to Experiments
1 and 2, we found no evidence of a significant reduction in
subjective workload with the use of static automation. As dis-
cussed later, these results may stem from the change from the
within-subject designs used in Experiment 1 and 2 to the between-
subjects design used in Experiment 3.

SA. For SAGAT accuracy, there was a main effect of condi-
tion, with poorer accuracy of responses to SAGAT queries when
using static automation compared with no automation. Thus, rep-
licating Experiment 2, there was a significant cost to SA with the
use of static automation under routine states, and this cost to SA
did not diminish after automation was removed and participants
resumed manual control.

Table 6
Inferential Statistics for Performance, Situation awareness, and Subjective Workload by Condition and Automation State in
Experiment 3

Static automation vs. No automation
(df ! 1, 58)

Adaptable automation vs. No
automation (df ! 1, 57)

Adaptive automation vs. No
automation (df ! 1, 57)

Dependent variable Effect F p 'p
2 Effect F p 'p

2 Effect F p 'p
2

Classification [Hit] Condition 2.02 .16 .03 Condition .09 .77 .002 Condition .52 .47 .01
State 3.48 .07 .06 State 3.87 .054 .06 State .16 .69 .00
Interaction 15.31 #.001! .21 Interaction 14.88 #.001! .21 Interaction 3.62 .06 .06

Classification [RT] Condition 1.64 .21 .03 Condition .45 .51 .008 Condition .97 .33 .02
State .50 .48 .01 State .07 .79 .001 State 5.63 .02! .09
Interaction 5.72 .02! .09 Interaction 1.85 .18 .03 Interaction .40 .53 .01

CPA [Hit–FA] Condition .20 .66 .003 Condition .88 .35 .02 Condition .72 .40 .01
State 10.91 .002! .16 State .17 .68 .003 State 1.63 .21 .03
Interaction 11.09 .001! .17 Interaction 1.20 .28 .02 Interaction 2.06 .16 .04

CPA [RT] Condition 10.77 .002! .16 Condition 5.74 .02! .09 Condition 11.00 .002! .16
State 6.26 .02! .10 State 2.60 .11 .04 State 8.37 .005! .13
Interaction .67 .42 .01 Interaction .03 .86 .001 Interaction 1.29 .26 .02

Dive [Hit–FA] Condition 3.08 .08 .05 Condition 11.28 #.001! .17 Condition 2.32 .13 .04
State 36.16 #.001! .38 State 16.88 #.001! .23 State 21.99 #.001! .28
Interaction 5.65 .02! .09 Interaction .58 .45 .01 Interaction .88 .35 .02

Dive [RT] Condition 12.25 .001! .17 Condition 4.79 .03! .08 Condition 8.74 .005! .13
State 3.06 .09 .05 State 5.24 .03! .08 State 5.33 .03! .09
Interaction .01 .92 .00 Interaction .37 .55 .01 Interaction .49 .49 .01

NASA TLX Condition .53 .47 .01 Condition .38 .54 .01 Condition .94 .34 .02
State 38.42 #.001! .39 State 10.03 .002! .15 State 14.39 #.001! .20
Interaction 3.04 .09 .05 Interaction .49 .49 .01 Interaction .01 .92 .00

ATWIT Condition .08 .78 .001 Condition .39 .54 .01 Condition .01 .92 .00
State 78.33 #.001! .58 State 41.50 #.001! .42 State 34.88 #.001! .38
Interaction 9.09 .004! .14 Interaction .37 .55 .01 Interaction .76 .39 .01

SAGAT [Accuracy] Condition 9.00 .004! .13 Condition 4.66 .04! .08 Condition 4.48 .04! .07
State 2.98 .09 .05 State 4.76 .03! .08 State .90 .35 .02
Interaction .02 .89 .00 Interaction .37 .55 .01 Interaction .31 .58 .01

Note. RT ! Response Time in seconds; CPA ! Closest Point of Approach; FA ! False Alarms; NASA TLX ! National Aeronautics and Space
Administration Task Load Index; ATWIT Air Traffic Workload Input Technique; SAGAT ! Situation Awareness Global Assessment Technique.
! p # .05.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

16 CHEN, VISSER, HUF, AND LOFT



Adaptable automation versus no automation. Consistent
with Experiments 1 and 2, and as shown in Figure 5, automation
usage coincided with the task-load peaks (see Figure 5). During the
first scenario participants used 13 min of automation on average
(47% of the available time). In the second scenario participants
used 18.35 min (67%). For the third scenario, participants used
7.49 min of the 10.58 min of automation available (71%).

Task performance. A 2 (condition; no automation, adaptable
automation) % 2 (state; routine, automation removal) mixed
ANOVA on classification accuracy revealed an interaction. The
advantage to classification accuracy with static automation (&5%)
during routine states was reversed during automation removal
states ("7%). However, there was no significant difference in
classification accuracy between the adaptable condition and the no
automation condition for the routine state, t(57) ! 1.31, p ! .20,
d ! 0.34, or after automation removal, t(57) ! "1.48, p ! .14,
d ! "0.38. Although there was no statistically significant evi-
dence of a return-to-manual deficit for the classification task,
classification accuracy was 7% poorer for the adaptable automa-
tion condition compared with the no automation condition after
automation removal. For classification RT, there was no main
effect or interaction.

For CPA task accuracy, there was no main effect of condition or
interaction. CPA task RT showed a main effect of condition, F(1,
57) ! 5.74, p ! .02, 'p

2 ! .09, with participants making slower
CPA decisions when using adaptable automation compared with
no automation.

Overall, in contrast to Experiment 2, adaptable automation did
not significantly improve classification accuracy or RT. Addition-
ally, in contrast to Experiments 1 and 2, adaptable automation did
not improve CPA task accuracy. In addition, adaptable automation
significantly slowed CPA RT, even after participants resumed
manual control.

For dive task accuracy, there was a main effect of condition.
Dive accuracy was poorer for the adaptable automation condition
compared with the no automation condition, replicating Experi-
ment 2. Dive task RT also indicated a main effect of condition.
Participants took longer to make correct dive decisions when using
adaptable automation compared with no automation. In summary,
there was a significant cost to nonautomated dive task accuracy
and RT associated with using adaptable automation during routine
states, and these costs were not reduced after automation was
removed.

Workload. For the ATWIT and the NASA TLX there were no
main effects of condition or interactions.

SA. For SAGAT there was a main effect of condition. SAGAT
accuracy was poorer when participants used adaptable automation
compared with no automation. Thus, in contrast to Experiments 1
and 2, there was a cost to SA arising from adaptable automation
that did not decrease after automation was removed.

Adaptive automation versus no automation.
Task performance. A 2 (condition; no automation, adaptive

automation) % 2 (state; routine, automation removal) mixed
ANOVA on classification accuracy revealed an interaction that
approached significance. For classification RT, there was no main
effect of condition and no interaction.

For CPA accuracy there was no main effect of condition or
interaction. For CPA RT there was a main effect for condition.
Participants were slower at marking CPAs in the adaptive condi-

tion compared with the no automation condition. In summary, the
use of adaptive automation provided no benefit to contact classi-
fication, and significantly slowed CPA RT.

For dive task accuracy, there was no main effect of condition
and no interaction. For dive RT we found a main effect of condi-
tion, with participants taking longer to make dive task decisions in
the adaptive condition compared with the no automation condition.

Workload. For ATWIT and the NASA TLX there were no
main effects or interactions.

SA. For SAGAT there was a main effect of condition, with
SAGAT accuracy poorer for the adaptive automation condition
compared with the no automation condition.

Trust. Trust in automation under routine states was calculated
from the mean of history-based trust scores of the first two sce-
narios (static M ! 4.11; 95% CI [3.99, 4.23]; adaptable M ! 4.07,
95% CI [3.89, 4.26]; adaptive M ! 4.12, 95% CI [3.93, 4.31]).
Trust in automation under the automation removal state was cal-
culated from history-based trust scores of the last scenario in
which automation was removed (static M ! 4.38, 95% CI [4.17,
4.59]; adaptable M ! 4.07, 95% CI [3.91, 4.23]; adaptive M !
4.14, 95% CI [3.90, 4.39]). A 3 (automation condition; static,
adaptable, adaptive) % 2 (automation state; routine, removal)
mixed ANOVA revealed no main effects or interactions (smallest
p ! .22). Trust was likely not impacted because automation
removal in the third scenario was not interpreted by the participant
as a failure of the automation (which might have led participants to
doubt the automation reliability), but rather as a deliberate action
due to a perceived threat to the submarine.

Meta-analysis. Because there was some inconsistency in the
impact of automation on performance, SA, and workload under
routine states across the three experiments, and because Experi-
ment 3 was slightly underpowered, to clarify our findings we
conducted a meta-analysis across the experiments using the pro-
cedures outlined by Cumming (2012). We conducted a meta-
analysis on the difference scores between the static automation and
no automation conditions, and between the adaptable automation
and no automation conditions, for all dependent variables that were
common across the three experiments under the routine state. For
each meta-analysis, the three experiments were weighted accord-
ing to the inverse of the variance of their effect sizes (i.e., a study
with a shorter confidence interval would have larger meta-analytic
weight). We applied the more conservative random effect model
(as opposed to a fixed-effects model) to account for the heteroge-
neity of the three experiments as well as for the variance in the
individual effect sizes. The forest plots showing mean effect sizes
and 95% CI’s (if a CI captures zero, then we cannot say the effect
differs significantly from zero) are presented in Figures 6 and 7
and are summarized and discussed where appropriate in the Gen-
eral Discussion section.

General Discussion

In three experiments, we simulated submarine track manage-
ment to examine the extent to which automation could improve
performance while allowing the operator to maintain SA, maintain
performance on an interrelated nonautomated task, and regain
manual control of automated tasks. To encourage participants to
remain engaged when using static automation, we designed the
automation only to support information acquisition and analysis,
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the DOA boundary at or below which costs to SA and return-to-
manual performance were considered to be less likely (Onnasch et
al., 2014). This DOA still required participants to make task
decisions and execute associated actions. We also examined the
impact of the periodic reallocation of automated tasks to manual
control either through operator triggered automation (adaptable
automation) or task-load triggers (adaptive automation). Partici-
pants performed two tasks that were supported by automation
(classification and CPA), and one task that was not supported by

automation (dive) but required integration of the same raw infor-
mation as the tasks supported by automation.

The Benefits and Costs of Using Static Automation

The meta-analyses (see Figure 6) indicate that the low degree of
static automation provided consistent benefits to classification task
accuracy, classification task RT, and CPA task accuracy. How-
ever, as shown in Figure 6, the use of static automation slowed
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Figure 6. Meta-analysis results for the static automation condition. The gray dots represent the mean
differences between the static automation condition and the no automation condition in Experiments 1, 2, and
3 (presented in that order), and the black squares represent the meta-analysis data point. 95% confidence intervals
are presented. Note that for Situation Awareness Global Assessment Technique accuracy the gray dots represent
Experiment 2 and 3.
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Adaptable Auto: CPA HIT-FA Rate Difference Score
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Figure 7. Meta-analysis results for the adaptable automation condition. The gray dots represent the mean
differences between the adaptable automation condition and the no automation condition in Experiments 1, 2,
and 3 (presented in that order), and the black squares represent the meta-analysis data point. 95% confidence
intervals are presented. Note that for Situation Awareness Global Assessment Technique accuracy the gray dots
represent Experiment 2 and 3.
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CPA task RT under routine conditions. This means that partici-
pants took longer to mark a CPA when using static automation
compared with no automation. This speed–accuracy trade-off in
CPA performance for the static automation condition might reflect
the need, or strategic shift, to retrospectively assess the contact
track history to make CPA decisions instead of continually mon-
itoring for CPAs. This strategy was viable because if the CPA was
missed the participant could always return later to mark it on the
waterfall display by looking at the track history to find when the
contact changed course away from Ownship. When automation
was removed in the last scenario of Experiment 3, benefits to the
classification and CPA task were eliminated, but we did not find
statistically significant return-to-manual deficits.

The meta-analyses (see Figure 6) indicate that the use of static
automation was effective in reducing participant’s ratings of work-
load on the ATWIT and NASA-TLX. However, there was con-
siderable variability in the extent of this reduction across experi-
ments. In Experiments 1 and 2, with the use of the within-subject
design, static automation reduced subjective workload, and was
the type of automation preferred by participants. However, as
shown in Figure 6, static automation provided no benefit to sub-
jective workload in Experiment 3 when the between-subjects de-
sign was used (particularly for the NASA-TLX). As indicated in
Figure 7, this pattern of subjective workload results across exper-
iments also occurred for the adaptable automation condition when
compared with no automation.

The subjective workload data highlight the importance, when
interpreting findings, of considering the experimental design that
was used. Evidence in the literature suggests that perceptions of
mental workload reflect individuals’ metacognitive judgments re-
garding the availability of task relevant information in working
memory (Estes, 2015; Yeh & Wickens, 1988). Participants in
Experiments 1 and 2 were able to compare the workload changes
that they were experiencing across the different within-subject
conditions. Of course, such comparisons were not possible for
participants in the between-subjects design in Experiment 3, who
were exposed exclusively to one type of condition. We believe that
a within-subject design is more ecologically valid in the current
context (see Greenwald, 1976) because experts working in com-
plex systems, such as submarine track management and air traffic
control, often transition between different working conditions,
which includes changes in automation availability or suitability for
different tasks as a function of the operational context in which
tasks are embedded. Within-subject designs also provide statistical
efficiency by removing subject variance from error terms used to
test treatment effects. A drawback is that within-subject designs
can be impacted by practice and asymmetric transfer (Poulton,
1982), and these possibilities need to be evaluated (although note
that we found no evidence for order effects in the current studies).

Overall, the results demonstrate that static automation that pro-
vides support to information acquisition and analysis (lower level
DOA) can deliver workload and performance benefits. However,
costs were also clearly apparent. The meta-analyses (see Figure 6)
indicate that the use of static automation resulted in costs to SA
and accuracy on the interdependent nonautomated dive task. In
addition, participants were not able to regain SA after they re-
turned to manual control in Experiment 3. The absence of a SA
deficit with the use of static automation in Experiment 1 is likely

because of the use of SPAM, which has been shown to be less
sensitive than SAGAT for measuring SA in simulated submarine
track management (Loft, Bowden, et al., 2015). It is likely that
SAGAT is more sensitive because it measures the consciously
reportable knowledge being held working memory.

As shown in Figure 6, the meta-analyses indicate that dive task
decisions were less accurate, and slower, with the use of static
automation compared with no automation. This pattern was repli-
cated in the adaptable condition (see Figure 6), and partly repli-
cated (slowed RT only) for the adaptive condition in Experiment 3.
It would have been reasonable to predict that the observed reduc-
tion in subjective workload from the provision of static automation
would provide participants with the spare cognitive capacity to
better manage the nonautomated dive task (e.g., Loft et al., 2013;
Rovira et al., 2007). However, in our study, the raw information
required for the dive task (assessing the relative location and
heading of contacts to each other and to Ownship) overlapped with
the information required to complete the classification and CPA
tasks. When the classification and CPA tasks were automated,
participants presumably did not monitor contact location and head-
ing as closely as they would have without automation (Parasura-
man & Manzey, 2010; Wickens et al., 2015). It is likely that this
diminished attention to contact location and heading impaired
participants’ performance on the interdependent nonautomated
dive task. To directly test this explanation, future researchers could
manipulate whether the nonautomated task shares information
processing requirements with automated tasks (as was the case in
the current study) or has information processing requirements that
are independent of automated tasks. We would expect to find that
performance on an independent non automated task would be the
same or better for those participants that use automation, compared
with those that use no automation. This is because, at least for
static automation, we observed consistent reductions in workload,
indicating that static automation provided participants with spare
cognitive capacity.

In conclusion, we expected that because the static automation
functioned below the critical information-processing boundary
(Onnasch et al., 2014), it would be less likely to result in costs to
SA and nonautomated task performance. This was clearly not the
case. Although static automation benefited performance and work-
load, participant SA was diminished and performance on nonau-
tomated task performance was degraded. These findings support
the more general view that static automation may not be optimal
for dynamic task environments, regardless of the level or infor-
mation processing stage at which it is implemented (e.g., Kaber &
Riley, 1999; Parasuraman, Cosenzo, & De Visser, 2009).

The Benefits and Costs of Using
Adaptable Automation

To our knowledge, this is the first study to have directly com-
pared adaptable to no automation conditions, and is the first to
have measured the costs of adaptable automation on SA, return-
to-manual performance, and performance on an interdependent
nonautomated task. We found that adaptable automation was more
likely to be engaged when task load and associated subjective
workload increased, and disengaged when demands receded, dem-
onstrating that participants could strategically control their auto-
mation usage. Originally, we had some concerns that participants
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might overuse automation, but this was clearly not the case. In fact,
in Experiments 2 and 3 in which no automation time limits were
imposed, participants only used automation for about half the
scenario time.

The meta-analyses (see Figure 7) indicate that the use of adapt-
able automation provided some benefits to performance, improv-
ing classification accuracy and CPA accuracy, and marginally
improving classification RT. There were also marginal reductions
to subjective workload as a result of using adaptable automation.
However, as shown in Figure 7, we also found reliable costs
associated with adaptable automation. Both accuracy and RT on
the dive task were degraded with the use of adaptable automation.
Furthermore, unlike the static automation condition, where dive
task performance recovered when participants resumed manual
control of the classification and CPA task, dive task performance
remained impaired after automation removal. In addition, there
were costs to SA as a result of using adaptable automation. Thus,
our expectation that the process of deciding when to use automa-
tion would help participants maintain SA was clearly off the mark.
Overall, not only did we find that adaptable automation provided
only modest improvements to performance and workload, we also
found that it produced substantial costs to SA and to nonautomated
task performance.

There are several potential explanations for these poor outcomes
of adaptable automation. There may have been a cognitive load
associated with the ongoing process of deciding when to engage
and disengage automation (Bailey et al., 2006; Harris, Hancock, &
Arthur, 1993; Kidwell et al., 2012), which might have been re-
garded by participants as an “extra task.” In line with this, partic-
ipants in Experiment 1 and 2 reported that they preferred using
static automation to adaptable automation. Participants may also
have taken some time to recover SA and the associated control of
tasks each time they disengaged automation because they needed
to switch attention to additional sources of display information
(task switching effects; Rogers & Monsell, 1995). Finally, partic-
ipants may not have been able to monitor their task demands or
performance effectively to accurately assess the need for automa-
tion (Flavell, 1979; Osman, 2010). In summary, we found little
support for our contention that the human operator might be best
placed to engage and disengage automation.

The Costs of Using Adaptive Automation

In Experiment 3, there were no benefits to performance or
workload from using adaptive automation that was engaged and
disengaged based on task load. In fact, CPA decisions were slower
with adaptive automation, without any corresponding improve-
ment in CPA task accuracy. Furthermore, there were costs to using
adaptive automation. Participants were less accurate and slower to
make dive task decisions, and SA was degraded, during both
routine states and after automation removal. In sum, the use of
adaptive automation was costly, with no concurrent benefits. We
did not, however, observe any significant return-to-manual defi-
cits. Overall these results are inconsistent with those reported by de
Visser and Parasuraman (2011), who found adaptive automation
reduced workload and improved SA. However, note that de Visser
and Parasuraman measured subjective SA, rather than using an
objective SA measure, and only found a reduction in workload
when the adaptive condition was compared with static automation.

Similar to adaptable automation, there may have been a recov-
ery time cost each time automation was disengaged. If so, unlike
adaptable automation, this would have been further compounded
by the fact that participants were provided with no warning that
automation was about to be disengaged. More generally, if adap-
tive automation was perceived by participants to have engaged or
disengaged at inopportune times, this might have created ‘auto-
mation surprises’ (Sarter, Woods, & Billings, 1997), and partici-
pants might have used additional cognitive resources to evaluate
how the introduction of automation could impact their assessment
of the tactical picture (e.g., looking to see if the timing lines and
track history matched their own expectations). As a result, the
participants’ workflow in developing and maintaining a mental
model of the situation may have been interrupted, leading to
temporary disorientation. A further potential drawback of adaptive
automation is that it may reduce the extent of operator engagement
in the scenario because they were not deciding when to use
automation. It will be important for future research to examine
how variations in display design can potentially mitigate potential
automation engagement reorientation costs or increase operator
engagement (Ballas, Heitmeyer, & Perez, 1992; Kieras, Meyer, &
Ballas, 2001). Finally, another potential issue is that the contact
count at which we engaged and disengaged automation may not
have been optimal.

Practical Implications

Technological innovation and its potential economic benefits
mean that humans will continue to deal with ever more highly
automated systems. A key challenge concerns how to design
automation technology to handle increasingly complex informa-
tion, while ensuring that key information is translated and com-
municated to human decision makers in a manner that allows them
to maintain SA and take control over automated tasks if required
(Hancock et al., 2013). Successfully addressing this challenge is a
current priority for defense departments around the world as part
of their attempts to design new information handling systems or to
evaluate off-the-shelf automation technologies for military com-
mand and control systems (Endsley, 2015). Although the current
studies used simulations of submarine track management, these
issues, and the outcomes of the current work, are also potentially
relevant to any work contexts that require humans to monitor
demanding perceptual displays, such as air traffic control and
unmanned vehicle control.

On the basis of the results of the meta-analysis presented by
Onnasch et al. (2014), we used a relatively low DOA that ensured
that the operator still made task decisions. The results indicate that
a relatively low degree of reliable static automation can consis-
tently improve performance and reduce subjective workload. How-
ever, we found that static automation also degraded participant SA.
This is a problem because SA represents the quality of an opera-
tor’s understanding of the task and his or her ability to anticipate
the future consequences of task events or their own actions, and
SA is a reliable indicator of the capacity of operators to respond to
sudden increases in workload/unexpected task events, or to regain
manual control of previously automated tasks (Vu & Chiappe,
2015).

Indeed, in industrial settings, automating tasks can improve
operator and system performance, but accidents have occurred
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because operators have not been adequately prepared to regain
manual control. In addition, the current dive task data suggest that
because of the loss of SA, operators in complex work systems may
find it difficult to maintain adequate performance on nonauto-
mated tasks that share information processing requirements with
currently automated tasks. Thus, whether the reduced workload
from automation will allow the operator to more effectively man-
age other nonautomated tasks depends on the nature of that non-
automated task. The implications for automation design are clear.
Designers should consider task information overlaps across all
subtasks of an information management role, to avoid unintention-
ally inducing operator complacency for nonautomated tasks.

Although the concept (and promise) of adaptable and adaptive
automation has a long history (Rouse, 1988), empirical evidence
regarding the effectiveness of adaptable and adaptive automation
is limited. Few industries have implemented adaptable or adaptive
automation. A large part of the reason for this is that such auto-
mation is expensive to design and implement. For industry to
seriously consider adaptable and adaptive automation as an alter-
native to static automation, there needs to be a systematic demon-
stration that adaptable or adaptive automation can maximize per-
formance (and minimize workload), while ensuring that operators
maintain sufficient SA to regain manual control when compared
with conditions were no automation is being used. We failed to
find evidence for these evaluation criteria in our current simula-
tions of submarine track management using either adaptable or
adaptive automation. Of course, there are alternative triggers po-
tentially suited to a submarine control room, such as operator
performance (e.g., Calhoun et al., 2011), secondary task workload
(Kaber & Riley, 1999), or operator physiology (Wilson & Russell,
2007). We also suspect that the schedule for engaging and disen-
gaging automation is most likely to be optimal if it takes into
account how moment-to-moment fluctuations in task load/work-
load relate to variation in performance within-individuals (Mracek,
Arsenault, Day, Hardy, III, & Terry, 2014; Wilson & Russell,
2007). Nevertheless, the current data indicate that allowing the
operator to decide when to engage and disengage automation, or
triggering automation based on task-load, are not likely to produce
sound outcomes.

The design of our submarine track management simulation was
informed by observations of real submarine combat systems and
by expert submariner opinion. Thus, our experiments have external
validity (psychological fidelity) because they represent a prototyp-
ical example of a work context that requires operators to monitor
demanding perceptual displays. The importance of using represen-
tative experimental contexts has long been advocated by the eco-
logical rationality approach to psychology (Brunswick, 1943; Si-
mon, 1956). Nonetheless, we certainly do not dispute the potential
problems in generalizing from relatively inexperienced partici-
pants to field operations involving experienced operators. There
are undoubtedly differences in domain-specific cognitive skill, and
in motivation, between experts and students. The expert is also
likely to be part of an established team within which communica-
tion might provide additional informational cues.

That said, there is also evidence that our results with inexperi-
enced participants can validly inform practical issues in opera-
tional contexts. In a recent study assessing SA and performance,
we found reasonably consistent results across student participants
using the current simulated track management task and follow-up

studies with expert submariners using real submarine combat
systems (Loft et al., 2016). Further, the meta-analysis conducted
by Onnasch et al. (2014) found that the benefits and costs of
automation were not moderated by experience; that is, the auto-
mation use benefit/costs trade-off was just as statistically likely to
occur for experts as it was for more naïve participants. On this
basis, it would be reasonable to expect to find similar effects of
automation on the performance, workload, and SA of experts as
those that have been reported in the current study. These points
notwithstanding, it will be crucial for future research to continue to
examine potential expert-novice differences in real military and
industrial settings so that we can develop a further understanding
how experts and novices differ (or not) in the deployment of
attention and/or in their use of strategy in approaching tasks that
include different types of automation.

In conclusion, the design of automation for supporting perfor-
mance in complex dynamic work systems is a diverse and chal-
lenging problem. It is essential that designs of these automation
tools be based on a thorough analysis of human cognition and
decision-making processes. Clearly, further basic strategic re-
search is urgently required to discover how best to adapt automa-
tion to keep human operators more cognitively engaged with their
tasks.
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